Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Prophylactic high-flow nasal cannula (HFNC) oxygen therapy can decrease the risk of extubation failure. It is frequently used in the postextubation phase alone or in combination with noninvasive ventilation. However, its physiological effects in this setting have not been thoroughly investigated. The aim of this study was to determine comprehensively the effects of HFNC applied after extubation on respiratory effort, diaphragm activity, gas exchange, ventilation distribution, and cardiovascular biomarkers.

Methods: This was a prospective randomized crossover physiological study in critically ill patients comparing 1 h of HFNC versus 1 h of standard oxygen after extubation. The main inclusion criteria were mechanical ventilation for at least 48 h due to acute respiratory failure, and extubation after a successful spontaneous breathing trial (SBT). We measured respiratory effort through esophageal/transdiaphragmatic pressures, and diaphragm electrical activity (ΔEAdi). Lung volumes and ventilation distribution were estimated by electrical impedance tomography. Arterial and central venous blood gases were analyzed, as well as cardiac stress biomarkers.

Results: We enrolled 22 patients (age 59 ± 17 years; 9 women) who had been intubated for 8 ± 6 days before extubation. Respiratory effort was significantly lower with HFNC than with standard oxygen therapy, as evidenced by esophageal pressure swings (5.3 [4.2-7.1] vs. 7.2 [5.6-10.3] cmHO; p < 0.001), pressure-time product (85 [67-140] vs. 156 [114-238] cmHO*s/min; p < 0.001) and ΔEAdi (10 [7-13] vs. 14 [9-16] µV; p = 0.022). In addition, HFNC induced increases in end-expiratory lung volume and PaO/FiO ratio, decreases in respiratory rate and ventilatory ratio, while no changes were observed in systemic hemodynamics, Troponin T, or in amino-terminal pro-B-type natriuretic peptide.

Conclusions: Prophylactic application of HFNC after extubation provides substantial respiratory support and unloads respiratory muscles. Trial registration January 15, 2021. NCT04711759.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584771PMC
http://dx.doi.org/10.1186/s13613-023-01203-zDOI Listing

Publication Analysis

Top Keywords

oxygen therapy
12
respiratory effort
12
physiological effects
8
high-flow nasal
8
nasal cannula
8
randomized crossover
8
extubation respiratory
8
ventilation distribution
8
standard oxygen
8
extubation
6

Similar Publications

Ferroptosis is involved in the progression of sepsis-induced acute lung injury (ALI). Kaempferol is a flavonoid compound that can protect against ALI. 5-Methylcytosine (m5C) is involved in the pathogenesis of sepsis.

View Article and Find Full Text PDF

Senolytic therapy increases replicative capacity by eliminating senescent endothelial cells.

Exp Gerontol

September 2025

Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Salk Institute for Biological Studies, La Jolla, CA, 92037, USA; Department of Molecular Biology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake Ci

Aging is the greatest risk factor for cardiovascular diseases (CVD) and is characterized by inflammation, oxidative stress, and cellular senescence. Cellular senescence is a state of persistent cell cycle arrest triggered by stressors such as DNA damage and telomere attrition. Senescent endothelial cells (ECs) can impair vascular function and promote inflammation, thereby contributing to CVD progression.

View Article and Find Full Text PDF

Differential Cortical Hemodynamics During Standard and Reversed Visually Guided Navigation: An fNIRS-Based Investigation.

J Neuroradiol

September 2025

Department of Physical Therapy, Yeungnam University College, 170 Hyeonchung-ro, Nam-gu, Daegu, Republic of Korea. Electronic address:

Visuospatial perception, which is based on the comprehension of objects and space, requires spatial attention to the surrounding environment. Stimulus-related elements that affect visuospatial tasks include object geometry, familiarity, complexity, and picture plane versus depth rotation. The dorsal stream pathway from the visual cortex, which is implicated in spatial processing, reflects the spatial component needed to orient the focus of attention to the location of the expected target stimulus.

View Article and Find Full Text PDF

Imbalanced mitochondrial homeostasis in ocular diseases: unique pathogenesis and targeted therapy.

Exp Eye Res

September 2025

School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shan

Mitochondria play a crucial role in energy production and are intimately associated with ocular function. Mitochondrial dysfunction can trigger oxidative stress and inflammation, adversely affecting key ocular structures such as the lacrimal gland, lens, retina, and trabecular meshwork. This dysfunction may compromise the barrier properties of the trabecular meshwork, impeding aqueous humour outflow, elevating intraocular pressure, and resulting in optic nerve damage and primary open-angle glaucoma.

View Article and Find Full Text PDF

Self-immolative fluorinated nanotheranostics amplifying F MRI signals for tumor-specific imaging and photodynamic therapy.

J Control Release

September 2025

School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China; Dongguan Liaobu Hospital, Dongguan 523400, Guangdong, China. Electronic address:

Fluorine-19 magnetic resonance imaging (F MRI) offers distinct advantages, including background-free signal detection, quantitative analysis, and deep tissue penetration. However, its application is currently limited by challenges associated with existing F MRI contrast agents, such as short transverse relaxation times (T), limited imaging sensitivity, and suboptimal biocompatibility. To overcome these limitations, a glutathione (GSH)-responsive triblock copolymer (PB7), featuring self-immolative characteristics, has been developed.

View Article and Find Full Text PDF