98%
921
2 minutes
20
Efficient storage and separation of holes and electrons pose significant challenges for catalytic reactions, particularly in the context of single-phase catalysis. Herein, V C MXene, with its intrinsic polarized electric field, successfully overcomes this obstacle. To enhance hole storage, a multistep etching process is employed under reducing conditions to control the content of surface termination groups, thus exposing more defective active sites. The intrinsically polarized electric field confines holes to the surface of the layer and free electrons within the layer, leading to a lag in e release compared to h . The quantities of stored holes and electrons are measured to be 18.13 µmol g and 106.37 µmol g , respectively. Under dark, V C demonstrates excellent and stable dark-catalytic performance, degrading 57.91% of tetracycline (TC 40 mg L ) and removing 23% of total organic carbon (TOC) after 140 min. In simulated sunlight and near-infrared light, the corresponding degradation rates reach 72.24% and 79.54%, with corresponding TOC removal rates of 49% and 48%, respectively. The hole and electron induced localized surface plasmon resonance (LSPR) effects contribute to a long-lasting and enhanced broad-spectrum mineralization of V C MXene. This study provides valuable insights into the research and application of all-weather MXene energy storage catalytic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202307795 | DOI Listing |
J Comput Neurosci
September 2025
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.
View Article and Find Full Text PDFNanomicro Lett
September 2025
College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.
The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
Economically viable and biologically compatible amino acids demonstrate significant potential as electrolyte microstructure modifiers in aqueous zinc-ion batteries (AZIBs). Compared to polar amino acids, nonpolar amino acids simultaneously own zincophilicity and hydrophobicity, showing great potential in the industrial application of AZIBs. However, nonpolar amino acids have been comparatively understudied in existing research investigations.
View Article and Find Full Text PDFAdv Mater
September 2025
College of Physics, Donghua University, Shanghai, 201620, China.
The 180° switching of the perpendicular Néel vector induced by the spin-orbit torque (SOT) presents significant potential for ultradense and ultrafast antiferromagnetic SOT-magnetoresistive random-access memory. However, its experimental realization remains a topic of intense debate. Here, unequivocal evidence is provided for the SOT-induced 180° switching of the perpendicular Néel vector in collinear antiferromagnetic CrO in a Pt/CrO/Co trilayer structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
Improving electrostrain in lead-free piezoelectric materials is critical for practical use. This study examines KTN crystals and employs two primary strategies to enhance their electrostrain: (1) Cu doping creates a restoring force enabling reversible domain switching. (2) Polarizing Cu:KTN crystals and applying an electric field perpendicular to the polarization direction ensure that all domains contribute to the strain.
View Article and Find Full Text PDF