Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase engineering is a central subject in materials research. The recent research interest in the phase transition behavior of atomically thin 2D materials reveals the important role of their surface chemistry. In this study, we investigated the phase transformation of ultrathin TiO(B) nanosheets to anatase under different conditions. We found that the convenient transformation in water under ambient conditions is driven by the hydrolysis of surface 1,2-ethylenedioxy groups and departure of ethylene glycol. A transformation pathway through the formation of protonic titanate is proposed. The ultrathin structure and the metastable nature of the precursor facilitate the phase conversion to anatase. Our finding offers a new insight into the mechanism of TiO(B) phase transition from the viewpoint of surface chemistry and may contribute to the potential application of ultrathin TiO(B) nanosheets in aqueous environments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt02752jDOI Listing

Publication Analysis

Top Keywords

phase transition
12
tiob nanosheets
12
mechanism tiob
8
surface chemistry
8
ultrathin tiob
8
phase
6
transition behaviour
4
behaviour mechanism
4
tiob
4
nanosheets water-mediated
4

Similar Publications

Monatomic glass formation through competing order balance.

Nat Commun

September 2025

Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.

The phase transformation of single-element systems is a fundamental natural process with broad implications, yet many aspects remain puzzling despite their simplicity. For instance, transition metals, Tantalum (Ta) and Zirconium (Zr), commonly form body-centred cubic crystals when supercooled. However, according to large-scale computer simulations, their crystallisation rates can differ by over 100 times.

View Article and Find Full Text PDF

Polymorphic two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit diverse properties for optoelectronic applications. Here, utilizing phase-engineered MoTe as a prototypical platform, we comprehensively explored its ultrafast and nonlinear optical properties to complete the fundamental framework of phase-dependent optical phenomena in 2D TMDCs. Starting with the phase-selective synthesis of 2H- and 1T'-MoTe with tailored thicknesses, we revealed their distinct photocarrier relaxation mechanisms using intensive power-/temperature-/thickness-dependent transient absorption spectra (TAS).

View Article and Find Full Text PDF

Background: Prenatal alcohol exposure (PAE) causes fetal alcohol spectrum disorder (FASD) and is associated with various cognitive and sensory impairments, including olfactory dysfunction. While both genetic and environmental factors contribute to olfactory dysfunction, PAE is considered a significant factor affecting brain development, including the olfactory system. In this study, we investigated the impact of PAE on the developing olfactory bulb (OB), specifically focusing on OB RGCs-radial glial cells that give rise to OB projection neurons.

View Article and Find Full Text PDF

In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.

View Article and Find Full Text PDF

Latent fingermark recovery in a simulated café setting: an exploratory study of cyanoacrylate fuming on disposable nonporous plastic and semiporous paper cups.

Sci Justice

September 2025

Department of Police Administration, Daegu University, PO Box 38453, Daegu, South Korea; Department of Policing & Security, Rabdan Academy, PO Box 114646, Abu Dhabi, United Arab Emirates. Electronic address:

Latent fingermark recovery from beverage containers is an important aspect of forensic investigations, yet the influence of substrate properties and beverage temperatures on fingermark development remains understudied. This exploratory study assessed the development and quality of latent fingermarks on disposable beverage cups made of nonporous plastic and semiporous paper using cyanoacrylate (CA) fuming, under conditions approximating a typical café environment. A total of 255 cups (107 plastic, 148 paper) were collected after participants consumed hot and iced beverages in a controlled classroom setting.

View Article and Find Full Text PDF