98%
921
2 minutes
20
Mixed culture of microorganisms is an effective method to remove high concentration of phenol from wastewater. Currently, the mechanism of how microorganisms collaborate to enhance the biodegradation of phenol is still a challenge. In this study, the isolated Bacillus subtilis ZWB1 and Bacillus velezensis ZWB2 were co-cultured to enhance phenol biodegradation, and the mechanism of microbial collaboration was further explored. The co-culture of strains could significantly increase the rate (16.7 mg/L·h, 1000 mg/L) and concentration of phenol degradation (1500 mg/L), comparing with mono-culture of ZWB1 (4.2 mg/L·h, 150 mg/L) and ZWB2 (6.9 mg/L·h, 1000 mg/L), among which the highest degraded concentration of phenol for ZWB1 and ZWB2 was 150 and 1000 mg/L. Further, the mechanism of microbial collaboration to enhance phenol biodegradation was raised: the decrease of antioxidant enzymes, and increase of degrading enzymes and surfactants on content after co-culture, assisted the microorganisms in withstanding phenol; Bacillus subtilis ZWB1 used the metabolites of Bacillus velezensis ZWB2 to promote its growth, and further to degrade phenol rapidly; Bacillus subtilis ZWB1 alleviated the damage, which resulted from the pH drop (5.8) of the fermentation broth during phenol degradation that inhibited the growth and degraded ability of Bacillus velezensis ZWB2, making the pH of fermentation broth stable at 7. Metabolic analysis showed that co-culture of strains could produce more alkaline and buffering compounds and pairs, to stabilize pH and reduce the toxicity of acidity on ZWB2, thus increasing the degradation rate. This study explains the mechanism of microbial collaboration on phenol biodegradation from multiple perspectives, especially pH stabilization, which provides a theoretical basis for the degradation of pollutants by co-culture microorganisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.117269 | DOI Listing |
Vet World
July 2025
Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia.
Background And Aim: Silage plays a pivotal role in ruminant nutrition, significantly influencing rumen fermentation, animal productivity, and environmental sustainability. Despite extensive research on silage and fermentation, a comprehensive synthesis of global trends and collaborations in this domain has not been systematically explored. This study aimed to conduct a bibliometric analysis of global research on silage feed and its effects on rumen fermentation in ruminants.
View Article and Find Full Text PDFCommun Dis Intell (2018)
February 2025
The World Health Organization Collaborating Centre for STI and AMR and Neisseria Reference Laboratory, NSW Health Pathology, Microbiology, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Au
The National Neisseria Network (NNN), Australia, established in 1979, comprises reference laboratories in each state and territory. Since 1981, the NNN has reported data for the Australian Gonococcal Surveillance Programme (AGSP), on antimicrobial susceptibility profiles for Neisseria gonorrhoeae isolated from each jurisdiction for an agreed group of agents. The antibiotics reported represent current or potential agents used for the treatment of gonorrhoea, and include ceftriaxone, azithromycin, ciprofloxacin and penicillin.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan 610106, China. Electronic address:
Background: Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease characterized by insulin resistance and progressive decline in pancreatic beta cell function. It is a public health problem of great magnitude that has been increasing globally over the last 4 decades. The latest research has found that sugar-sweetened beverages (SSBs), as an important dietary risk factor, are closely related to the occurrence and development of T2DM.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
Background: Dry-fermented soybean meal (DFSBM) and wet-fermented soybean meal (WFSBM) were evaluated as alternatives to conventional soybean meal in piglet diets, focusing on growth performance, antioxidant function and fecal microbiome modulation. A total of 225 male piglets (Duroc × (Landrace × Yorkshire)) aged 40 days with a body weight of 13.01 ± 0.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Riken, Center for Sustainable Resource Sciences, Saitama 351-0198, Japan.
-Adenosyl-l-methionine (SAM) is well-known as a methyl donor for methyltransferases but also functions as a 3-amino-3-carboxypropyl (3-ACP) donor for 3-ACP transferases. NAT is a 3-ACP transferase which accepts β-lactam antibiotic nocardicin G () and SAM to produce isonocardicin C. Due to the lack of structural information about this enzyme, its reaction mechanism has not been fully identified.
View Article and Find Full Text PDF