Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endometrial cancer (EC) is one of the most common cancers of the female reproductive system. Multi-epitope vaccine may be a promising and effective strategy against EC. In this study, we designed a novel multi-epitope vaccine based on the antigenic proteins PRAME and TMPRSS4 using immunoinformatics and bioinformatics approaches. After a rigorous selection process, 14 cytotoxic T lymphocyte (CTL) epitopes, 6 helper T lymphocyte (HTL) epitopes, and 8 B cell epitopes (BCEs) were finally selected for vaccine construction. To enhance the immunogenicity of the vaccine candidate, the pan HLA DR-binding epitope was included in the vaccine design as an adjuvant. The final vaccine construct had 455 amino acids and a molecular weight of 49.8 kDa, and was predicted to cover 95.03% of the total world population. Docking analysis showed that there were 10 hydrogen bonds and 19 hydrogen bonds in the vaccine-HLA-A*02:01 and vaccine-HLA-DRB1*01:01 complexes, respectively, indicating that the vaccine has a good affinity to MHC molecules. This was further supported by molecular dynamics (MD) simulation. Immune simulation showed that the designed vaccine was able to induce higher levels of immune cell activity, with the secretion of numerous cytokines. The codon adaptation index (CAI) value and GC content of the optimised codon sequences of the vaccine were 0.986 and 54.43%, respectively, indicating that the vaccine has the potential to be highly expressed. The in silico analysis suggested that the designed vaccine may provide a novel therapeutic option for the individualised treatment of EC patients in the future.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2263213DOI Listing

Publication Analysis

Top Keywords

vaccine
12
multi-epitope vaccine
12
novel multi-epitope
8
vaccine candidate
8
endometrial cancer
8
immunoinformatics bioinformatics
8
bioinformatics approaches
8
hydrogen bonds
8
indicating vaccine
8
designed vaccine
8

Similar Publications

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

Background: Older adults are more vulnerable to severe consequences caused by seasonal influenza. Although seasonal influenza vaccination (SIV) is effective and free vaccines are available, the SIV uptake rate remained inadequate among people aged 65 years or older in Hong Kong, China. There was a lack of studies evaluating ChatGPT in promoting vaccination uptake among older adults.

View Article and Find Full Text PDF

Pay-It-Forward 23-Valent Pneumococcal Polysaccharide Vaccination Among Older Adults: Protocol for a Randomized Controlled Trial.

JMIR Res Protoc

September 2025

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health & Life Science Institute, Guangxi Medical University, Nanning, China.

Background: The 23-valent pneumococcal polysaccharide vaccine reduces the risk of pneumonia among adults by 38% to 46%. However, only a few older adults in resource-limited areas of China have received the pneumococcal vaccination. Pay-it-forward is a social innovation that offers participants free or subsidized health services and a community-engaged message, with an opportunity to donate to support subsequent recipients.

View Article and Find Full Text PDF

Coronavirus, a large family of positive-sense RNA viruses, are responsible for both mild and severe respiratory illnesses, ranging from the common cold to life-threatening conditions. Despite significant advances in vaccine and antiviral development, the high mutability of human coronaviruses (HCoVs), such as SARS-CoV-2, presents a major challenge in treating these infections. Effective, broad-spectrum antiviral drugs are urgently needed to address both current and future HCoV outbreaks.

View Article and Find Full Text PDF

Understanding acute infectious disease dynamics at individual and population levels is critical for informing public health preparedness and response. Serological assays, which measure a range of biomarkers relating to humoral immunity, can provide a valuable window into immune responses generated by past infections and vaccinations. However, traditional methods for interpreting serological data, such as binary seropositivity and seroconversion thresholds, often rely on heuristics that fail to account for individual variability in antibody kinetics and timing of infection, potentially leading to biased estimates of infection rates and post-exposure immune responses.

View Article and Find Full Text PDF