Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymorphs of MnO comprise Mn(III) and Mn(IV), which are both strong oxidants capable of BPA degradation, but their relative contributions are unclear. To advance process understanding, the reactivities of biogenic MnO prepared using Roseobacter sp. AzwK-3b and synthetic MnO (i.e., hexagonal and triclinic birnessite) toward BPA were compared. Both colloidal and particulate biogenic MnO, as well as triclinic birnessite, showed insignificant reactivity towards BPA, but degradation did occur when pyrophosphate (PP), a ligand for Mn(III), was present. Despite higher Mn(III) content of triclinic birnessite (38.6 %), only hexagonal birnessite with an Mn(III) content of 30.4 % degraded BPA without PP, and no rate increases were observed following the addition of PP. Similarly, colloidal MnO degraded BPA with nearly double the rate measured with particulate MnO (i.e., 1.24 ± 0.10 versus 0.73 ± 0.08 h), even though the Mn(III) contents were only 10 % different. The Mn(III) release rates from each MnO polymorph in the presence of PP correlated more strongly with the observed BPA degradation rates than with Mn(III) content, suggesting that both Mn(III) release rate and Mn(III) content govern MnO-mediated BPA degradation. In natural settings, Mn(III) generally occurs in complexed form suggesting that laboratory testing should include ligands to derive environmentally relevant information about MnO-mediated degradation of BPA and other compounds of concern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132596DOI Listing

Publication Analysis

Top Keywords

bpa degradation
16
mniii content
16
triclinic birnessite
12
mniii
11
relative contributions
8
mniii mniv
8
bpa
8
biogenic mno
8
degraded bpa
8
mniii release
8

Similar Publications

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

Bisphenol A (BPA) and its analogs are collectively termed bisphenol compounds (BPs), which are predominantly utilized in the manufacturing of polycarbonate plastics and epoxy resins. BPs are ubiquitous in diverse environmental matrices, human tissues, and metabolic products. Extensive research has demonstrated that BPs exert adverse effects on the nervous, reproductive, immune, and metabolic systems.

View Article and Find Full Text PDF

Bisphenol F disrupts lipophagy and lysosomal acidification via ATGL-SIRT1-PPARα signaling in NAFLD-like hepatic changes.

Ecotoxicol Environ Saf

September 2025

Center for Global Health, the Key Laboratory of Modern Toxicology, Ministry of Education, Department of Hygienic Analysis and Detection, School of Public Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Bisphenol F (BPF), a widely used substitute for bisphenol A (BPA), has raised growing concerns due to its potential metabolic toxicity. Recent studies suggest that BPF exposure is associated with lipid accumulation and non-alcoholic fatty liver disease (NAFLD‌)-like changes, however, the underlying mechanisms remain poorly understood. This study was performed to investigate the BPF-induced NAFLD-like changes through the lipid degradative pathway, which via an unrecognized defect of lipophagy mediated by Adipose Triglyceride Lipase (ATGL)-Sirtuin 1 (SIRT1)-Peroxisome proliferator-activated receptor α (PPARα) signaling axis.

View Article and Find Full Text PDF

Bisphenol A (BPA) and di-n-butyl phthalate (DBP) are ubiquitous endocrine disruptors implicated in bone metabolism disorders, but their precise mechanisms remain unclear. Here, we demonstrated that BPA and DBP bidirectionally disrupt bone homeostasis by targeting CD36 in bone marrow-derived mesenchymal stem cells (BMSCs). Mechanistically, both chemicals upregulate CD36 expression, which sequesters ATG9a at the Golgi apparatus, inhibits autophagosome maturation, and thereby impairs osteogenic differentiation of BMSCs, as evidenced by reduced ALP and RUNX-2 levels.

View Article and Find Full Text PDF

With the increasing concern for ecological environmental and food safety, the development of synergistic systems integrating efficient bisphenol trace sensing and green photocatalytic degradation has emerged as a current research focus. In this study, a novel surface-enhanced Raman scattering (SERS) sensing-degradation integrated platform was successfully developed for the detection and degradation of bisphenol through the uniform modification of hydrogen-bonded organic framework nanorods loaded with gold nanoparticles (HOFs@Au). Based on the remarkable molecular enrichment effect of the porous structure of HOFs and the strong localized surface plasmon resonance (LSPR) effect from the AuNPs, the composite system exhibited excellent trace detection performance.

View Article and Find Full Text PDF