98%
921
2 minutes
20
Non-specific lipid transfer proteins (nsLTPs) are antimicrobial peptides, involved in several plant biological processes including root nodule nitrogen fixation (RNF). Nodulating plants belonging to the RNF clade establish symbiosis with the nitrogen-fixing bacteria rhizobia (legumes symbiosis model) and Frankia (actinorhizal symbiosis model) leading to root nodule formation. nsLTPs are involved in processes active in early step of symbiosis and functional nodule in both models. In legumes, nsLTPs have been shown to regulate symbiont entry, promote root cortex infection, membrane biosynthesis, and improve symbiosis efficiency. More recently, a nsLTP, AgLTP24 has been described in the context of actinorhizal symbiosis between Alnus glutinosa and Frankia alni ACN14a. AgLTP24 is secreted at an early step of symbiosis on the deformed root hairs and targets the symbiont in the nitrogen-fixing vesicles in functional nodules. nsLTPs are involved in RNF, but their functions and evolutionary history are still largely unknown. Numerous putative nsLTPs were found up-regulated in functional nodules compared to non-infected roots in different lineages within the RNF clade. Here, results highlight that nodulating plants that are co-evolving with their nitrogen-fixing symbionts appear to have independently specialized nsLTPs for this interaction, suggesting a possible convergence of function, which opens perspectives to investigate nsLTPs functions in RNF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520049 | PMC |
http://dx.doi.org/10.1038/s41598-023-41117-1 | DOI Listing |
New Phytol
September 2025
College of Biology, Hunan University, Changsha, 410082, China.
In legume root nodules, rhizobia invade host cells to form symbiosomes that drive atmospheric nitrogen fixation. Although the metabolic roles of infected cells (ICs) are well established, the contributions of adjacent uninfected cells (UCs) have remained largely unexplored. Here, through forward genetics methods, we identify DEBINO4, a phosphoenolpyruvate carboxylase (PEPC) uniquely expressed in UCs, as a pivotal regulator of carbon metabolism essential for sustaining symbiosome function and nitrogen assimilation.
View Article and Find Full Text PDFJ Plant Physiol
September 2025
Department of Plant Physiology, University of Granada, Granada, Spain. Electronic address:
Legumes form symbioses with nitrogen-fixing bacteria, well studied metabolically but less so in terms of respiration. Symbiotic nitrogen fixation demands high respiratory ATP and carbon skeletons, linking nitrogen assimilation and both NADH- and ATP-dependent process to mitochondrial respiration. The plant mitochondrial electron transport chain contains two terminal oxidases that differentially fractionate against O, providing estimations in vivo of the energy efficiency of respiration.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19 Str., 20-033 Lublin, Poland.
The taxonomic status of two bacterial strains, KW56 and 2063, isolated from root nodules of (Spanish broom), was investigated using a polyphasic approach. Both isolates belong to the genus , yet exhibit significant genotypic and phenotypic differences from all currently described species. Whole-genome comparisons revealed that strain KW56 is most closely related to PETP 02, while strain 2063 is related to strains STM 196 and 29-15.
View Article and Find Full Text PDFBraz J Biol
September 2025
Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Montes Claros, MG, Brasil.
The study of plant growth-promoting microorganisms is crucial for developing new agricultural strategies aimed at increasing productivity and resilience in semi-arid environments, where water scarcity and soil degradation pose critical challenges. Therefore, this study aimed to identify and relate the effects of inoculation of growth-promoting or nodulating microorganisms in isolates from chickpea roots grown in a semiarid region. The nodules were washed with distilled water, 95% ethanol and 3% NaClO.
View Article and Find Full Text PDFEur Radiol
September 2025
Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Objective: To explore the value of microflow patterns based on superb microvascular imaging (SMI) combined with greyscale ultrasound in thyroid nodule diagnosis and biopsy recommendation.
Materials And Methods: Adult patients with thyroid nodules were recruited from May 2023 to February 2024. The greyscale features of nodules were evaluated according to the five ultrasound risk stratification systems (RSSs).