Machine learning forecasts for seasonal epidemic peaks: Lessons learnt from an atypical respiratory syncytial virus season.

PLoS One

Real-Time Syndromic Surveillance Team, Field Services, Health Protection Operations, UK Health Security Agency, Birmingham, United Kingdom.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Seasonal peaks in infectious disease incidence put pressures on health services. Therefore, early warning of the timing and magnitude of peak activity during seasonal epidemics can provide information for public health practitioners to take appropriate action. Whilst many infectious diseases have predictable seasonality, newly emerging diseases and the impact of public health interventions can result in unprecedented seasonal activity. We propose a Machine Learning process for generating short-term forecasts, where models are selected based on their ability to correctly forecast peaks in activity, and can be useful during atypical seasons. We have validated our forecasts using typical and atypical seasonal activity, using respiratory syncytial virus (RSV) activity during 2019-2021 as an example. During the winter of 2020/21 the usual winter peak in RSV activity in England did not occur but was 'deferred' until the Spring of 2021. We compare a range of Machine Learning regression models, with alternate models including different independent variables, e.g. with or without seasonality or trend variables. We show that the best-fitting model which minimises daily forecast errors is not the best model for forecasting peaks when the selection criterion is based on peak timing and magnitude. Furthermore, we show that best-fitting models for typical seasons contain different variables to those for atypical seasons. Specifically, including seasonality in models improves performance during typical seasons but worsens it for the atypical seasons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516409PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291932PLOS

Publication Analysis

Top Keywords

machine learning
12
atypical seasons
12
respiratory syncytial
8
syncytial virus
8
timing magnitude
8
public health
8
seasonal activity
8
rsv activity
8
typical seasons
8
activity
6

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF