98%
921
2 minutes
20
Near-edge X-ray absorption mass spectrometry (NEXAMS) around the nitrogen and oxygen K-edges was employed on gas-phase peptides to probe the electronic transitions related to their protonation sites, namely at basic side chains, the N-terminus and the amide oxygen. The experimental results are supported by replica exchange molecular dynamics and density-functional theory and restricted open-shell configuration with single calculations to attribute the transitions responsible for the experimentally observed resonances. We studied five tailor-made glycine-based pentapeptides, where we identified the signature of the protonation site of N-terminal proline, histidine, lysine and arginine, at 406 eV, corresponding to N 1s → σ*(NH) ( = 2 or 3) transitions, depending on the peptides. We compared the spectra of pentaglycine and triglycine to evaluate the sensitivity of NEXAMS to protomers. Separate resonances have been identified to distinguish two protomers in triglycine, the protonation site at the N-terminus at 406 eV and the protonation site at the amide oxygen characterized by a transition at 403.1 eV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp02524a | DOI Listing |
J Phys Chem Lett
September 2025
School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.
Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.
View Article and Find Full Text PDFRadiat Res
September 2025
Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
Conventional radiotherapy based on X rays is used to treat more than 50% of cancers. Although effective, radiotherapy can damage healthy tissues around the tumor due to the X-ray dose deposition profile, as well as the safety margin needed to compensate for dose uncertainties. A notable side effect is cellular senescence, characterized by the cessation of cell division while maintaining metabolic activity and promoting the secretion of various components, called the senescence-associated secretory phenotype.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Electrochemical synthesis of ammonia (NH) is a promising green alternative to the conventional Haber-Bosch process. Here, we report the synthesis of a heteroatomic metal-metal bonded dual atomic (DA) Mn-Cu catalytic site embedded within nitrogen-doped carbon (NC) matrix for high-performance electrochemical reduction of N to NH. The asymmetric electronic distribution localized at the dual atomic sites synergistically enhances the adsorption and activation of N, facilitating the complex proton-coupled electron transfer process.
View Article and Find Full Text PDFChemistry
September 2025
Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
The long-term visualization of intracellular Fe dynamics and lysosomal activity is crucial for investigating the physiological roles and functions of lysosomes during the growth of organisms. The lysosome-targeted fluorescent probe (RBH-EdC), derived from rhodamine-nucleoside conjugates, demonstrates a sophisticated dual-activation design: one is Fe⁺ response, triggering spirolactam ring-opening to form xanthine structures, resulting in ≥ 1000-fold fluorescence enhancement with visible colorimetric transition (colorless→pink). Another is pH sensitivity, demonstrating protonation-dependent fluorescence amplification at the dC at site N3 (pK= 2.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
The anaerobic glycyl radical enzyme choline trimethylamine-lyase (CutC) is produced by multiple bacterial species in the human gut microbiome and catalyzes the conversion of choline to trimethylamine (TMA) and acetaldehyde. CutC has emerged as a promising therapeutic target due to its role in producing TMA, which is subsequently oxidized in the liver to form trimethylamine--oxide (TMAO). Elevated TMAO levels are associated with several human diseases, including atherosclerosis and other cardiovascular disorders─a leading cause of mortality worldwide.
View Article and Find Full Text PDF