Highly charged cations are omnipresent species after the interaction of high-energy or high-intensity light with matter. When embedded in environments, the mechanism and outcome of the redistribution of the cation's charge are crucial for the further fate of the whole system. Generally, ground-state cations can decay by charge transfer, proceeding radiatively, through nuclear dynamics, or by electron-transfer-mediated decay (ETMD).
View Article and Find Full Text PDFBecause of the Heisenberg uncertainty principle, the structure of a molecule fluctuates about its mean geometry, even in the ground state. Observing this fundamental quantum effect experimentally-particularly, revealing the collective nature of the structural quantum fluctuations-remains an unmet challenge for complex molecules. In this work, we achieved this for an 11-atom molecule by inducing its Coulomb explosion with an x-ray free-electron laser.
View Article and Find Full Text PDFTracking the motion of individual atoms during chemical reactions represents a severe experimental challenge, especially if several competing reaction pathways exist or if the reaction is governed by the correlated motion of more than two molecular constituents. Here we demonstrate how ultrashort X-ray pulses combined with coincident ion imaging can be used to trace molecular iodine elimination from laser-irradiated diiodomethane (CHI), a reaction channel of fundamental importance but small relative yield that involves the breaking of two molecular bonds and the formation of a new one. We map bending vibrations of the bound molecule, disentangle different dissociation pathways, image the correlated motion of the iodine atoms and the methylene group leading to molecular iodine ejection, and trace the vibrational motion of the formed product.
View Article and Find Full Text PDFJ Am Chem Soc
June 2025
Low-energy-electron emission from resonant Auger final states via intermolecular Coulombic decay (RA-ICD) has previously been described as a promising scenario for controlling radiation damage for medical purposes, but it has so far only been observed in prototypical atomic and molecular van der Waals dimers and clusters. Here, we report the experimental observation of RA-ICD in an aqueous solution. We show that for solvated Ca ions, the emission can be very efficiently controlled by tuning the photon energy of exciting X-rays to inner-shell resonances of the ions.
View Article and Find Full Text PDFWe demonstrate an advanced scattering method for accessing the 3D reciprocal space of crystalline structures forming in a rapidly supercooled noble-gas liquid using a combination of femtosecond X-ray diffraction and X-ray cross-correlation analysis. The preservation of angular information from the scattering signal allows probing the structure factor along selected directions in reciprocal space and identifying signatures undetectable in azimuthally integrated scattering curves. Therefore, more information from serial diffraction experiments on stochastic crystallization processes can be retrieved despite the inherent variation of the crystal orientation and morphology for each single probe.
View Article and Find Full Text PDFExperimental insights into low-kinetic-energy electron scattering in aqueous solutions are essential for an improved understanding of electron-driven chemistry and radiobiology, and the development and informed application of aqueous-phase electron-based spectroscopy and dichroism methods. Generally, in aqueous environments and for electron kinetic energies below 12-15 eV, significant and, thus far, incompletely understood low-energy-transfer inelastic electron scattering with solvent molecules preponderates. This leads to cascades of tens-of-meV kinetic-energy losses that distort nascent photoelectron spectra, prevent direct and accurate electron-binding-energy measurements, and limit possibilities to determine electron-scattering cross sections at especially low electron kinetic energies.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2025
Gas-phase activation and dissociation studies of biomolecules, proteins and their non-covalent complexes using X-rays hold great promise for revealing new insights into the structure and function of biological samples. This is due to the unique properties of X-ray molecular interactions, such as site-specific and rapid ionization. In this perspective, we report and discuss the promise of first proof-of-principle studies of X-ray-induced dissociation of native (structurally preserved) biological samples ranging from small 17 kDa monomeric proteins up to large 808 kDa non-covalent protein assemblies conducted at a synchrotron (PETRA III) and a free-electron laser (FLASH2).
View Article and Find Full Text PDFAmino acids and other small chiral molecules play key roles in biochemistry. However, in order to understand how these molecules behave , it is necessary to study them under aqueous-phase conditions. Photoelectron circular dichroism (PECD) has emerged as an extremely sensitive probe of chiral molecules, but its suitability for application to aqueous solutions had not yet been proven.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2025
The structure and reactivity of peptides can be influenced by their protonation state. Notably, protonation of the backbone can induce structural changes, such as tautomerism, shifting from the stable keto form to the enol form. This phenomenon, particularly in the backbone protonated peptide acetyl-pentaglycine, was examined using a combination of soft X-ray action spectroscopy at the nitrogen K-edge and theoretical calculations based on density functional theory (DFT).
View Article and Find Full Text PDFSoft X-ray irradiation of molecules causes electronic core-level vacancies through photoelectron emission. In light elements, such as C, N, or O, which are abundant in the biosphere, these vacancies predominantly decay by Auger emission, leading inevitably to dissociative multiply charged states. It was recently demonstrated that an environment can prevent fragmentation of core-level-ionised small organic molecules through immediate non-local decay of the core hole, dissipating charge and energy to the environment.
View Article and Find Full Text PDFThe photochemistry of heterocyclic molecules plays a decisive role for processes and applications like DNA photo-protection from UV damage and organic photocatalysis. The photochemical reactivity of heterocycles is determined by the redistribution of photoenergy into electronic and nuclear degrees of freedom, initially involving ultrafast internal conversion. Most heterocycles are planar in their ground state and internal conversion requires symmetry breaking.
View Article and Find Full Text PDFDissociation upon sulfur K-shell excitation or ionization of SF_{6} is studied by sulfur L-shell emission spectroscopy using synchrotron radiation and multiconfiguration Dirac-Hartree-Fock calculations of emission energies and transition rates. The decay path involves in particular Auger emission with the ejection of one or more electrons, leading to singly or multiply charged intermediate states. Nevertheless, the results of the study show that the observed photon emission at 151-152 eV following excitation at 2485-2489 eV originates dominantly from transitions in neutral sulfur.
View Article and Find Full Text PDFThe interface of the oceans and aqueous aerosols with air drives many important physical and chemical processes in the environment, including the uptake of CO by the oceans. Transport across and reactions at the ocean-air boundary are in large part determined by the chemical composition of the interface, , the first few nanometers into the ocean. The main constituents of the interface, besides water molecules, are dissolved ions and amphiphilic surfactants, which are ubiquitous in nature.
View Article and Find Full Text PDFGas-phase near-edge X-ray absorption mass spectrometry (NEXAMS) was employed at the carbon and oxygen K-edges to probe the influence of a single water molecule on the protonated phosphotyrosine molecule. The results of the photodissociation experiments revealed that the water molecule forms two bonds, with the phosphate group and another chemical group. By comparing the NEXAMS spectra at the carbon and oxygen K-edges with density functional theory calculations, we attributed the electronic transitions responsible for the observed resonances, especially the transitions due to the presence of the water molecule.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
In our work, we demonstrate that X-ray photons can initiate a "molecular catapult" effect, leading to the dissociation of chemical bonds and the formation of heavy fragments within just a few femtoseconds. We reconstruct the momenta of fragments from a three-body dissociation in bromochloromethane using the ion pair average (IPA) reference frame, demonstrating how light atomic groups, such as alkylene and alkanylene, can govern nuclear dynamics during the dissociation process, akin to projectiles released by a catapult. Supported by calculations, this work highlights the crucial role of low-reduced-mass vibrational modes in driving ultrafast chemical processes.
View Article and Find Full Text PDFA permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-, size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm-3) molecular beam with pulse durations up to 100 µs generated by a new version of the Even-Lavie valve.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
Liquid-jet photoelectron spectroscopy (LJ-PES) and electronic-structure theory were employed to investigate the chemical and structural properties of the amino acid l-proline in aqueous solution for its three ionized states (protonated, zwitterionic, and deprotonated). This is the first PES study of this amino acid in its biologically relevant environment. Proline's structure in the aqueous phase under neutral conditions is zwitterionic, distinctly different from the nonionic neutral form in the gas phase.
View Article and Find Full Text PDFThe multi-phase oxidation of S(IV) plays a crucial role in the atmosphere, leading to the formation of haze and severe pollution episodes. We here contribute to its understanding on a molecular level by reporting experimentally determined pK values of the various S(IV) tautomers and reaction barriers for SO formation pathways. Complementary state-of-the-art molecular-dynamics simulations reveal a depletion of bisulfite at low pH at the liquid-vapor interface, resulting in a different tautomer ratio at the interface compared to the bulk.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2024
Phys Chem Chem Phys
November 2024
We have investigated the surfactant properties of phenol in aqueous solution as a function of pH and bulk concentration using liquid-jet photoelectron spectroscopy (LJ-PES) and surface tension measurements. The emphasis of this work is on the determination of the Gibbs free energy of adsorption and surface excess of phenol and its conjugate base phenolate at the bulk p (9.99), which can be determined for each species using photoelectron spectroscopy.
View Article and Find Full Text PDFLiquid-jet photoemission spectroscopy (LJ-PES) directly probes the electronic structure of solutes and solvents. It also emerges as a novel tool to explore chemical structure in aqueous solutions, yet the scope of the approach has to be examined. Here, we present a pH-dependent liquid-jet photoelectron spectroscopic investigation of ascorbic acid (vitamin C).
View Article and Find Full Text PDFAuger electron spectroscopy is an omnipresent experimental tool in many fields of fundamental research and applied science. The determination of the kinetic energies of the Auger electrons yields information about the element emitting the electron and its chemical environment at the time of emission. Here, we present an experimental approach to determine Auger spectra for emitter sites in the vicinity of a positive elementary charge based on electron-electron-electron and electron-electron-photon coincidence spectroscopy.
View Article and Find Full Text PDFPhys Rev Lett
May 2024
The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging.
View Article and Find Full Text PDFX-ray-induced damage is one of the key topics in radiation chemistry. Substantial damage is attributed to low-energy electrons and radicals emerging from direct inner-shell photoionization or produced by subsequent processes. We apply multi-electron coincidence spectroscopy to X-ray-irradiated aqueous solutions of inorganic ions to investigate the production of low-energy electrons (LEEs) in a predicted cascade of intermolecular charge- and energy-transfer processes, namely electron-transfer-mediated decay (ETMD) and interatomic/intermolecular Coulombic decay (ICD).
View Article and Find Full Text PDF