98%
921
2 minutes
20
The flux in photosynthesis can be studied by performing CO pulse labelling and analysing the temporal labelling kinetics of metabolic intermediates using gas or liquid chromatography linked to mass spectrometry. Metabolic flux analysis (MFA) is the primary approach for analysing metabolic network function and quantifying intracellular metabolic fluxes. Different MFA approaches differ based on the metabolic state (steady vs. non-steady state) and the use of stable isotope tracers. The main methodology used to investigate metabolic systems is metabolite steady state associated with stable isotope labelling experiments. Specifically, in biological systems like photoautotrophic organisms, isotopic non-stationary 1C metabolic flux analysis at metabolic steady state with transient isotopic labelling (C-INST-MFA) is required. The common requirement for metabolic steady state, alongside its very short half-timed reactions, complicates robust MFA of photosynthetic metabolism. While custom gas chambers design has addressed these challenges in various model plants, no similar tools were developed for liquid photosynthetic cultures (e.g., algae, cyanobacteria), where diffusion and equilibration of inorganic carbon species in the medium entails a new dimension of complexity. Recently, a novel tailor-made microfluidics labelling system has been introduced, supplying short CO pulses at steady state, and resolving fluxes across most photosynthetic metabolic pathways in algae. The system involves injecting algal cultures and medium containing pre-equilibrated inorganic C into a microfluidic mixer, followed by rapid metabolic quenching, enabling precise seconds-level label pulses. This was complemented by a CO-bubbling-based open labelling system (photobioreactor), allowing long pulses (minutes-hours) required for investigating fluxes into central C metabolism and major products. This combined labelling procedure provides a comprehensive fluxome cover for most algal photosynthetic and central C metabolism pathways, thus allowing comparative flux analyses across algae and plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501915 | PMC |
http://dx.doi.org/10.21769/BioProtoc.4808 | DOI Listing |
J Clin Pharmacol
September 2025
Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Topiramate is increasingly used in the treatment of epilepsy during pregnancy. However, its plasma concentration evidently decreases during pregnancy, which may reduce its efficacy. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of topiramate to simulate maternal and fetal pharmacokinetic changes across different trimesters and to propose dose adjustments.
View Article and Find Full Text PDFNMR Biomed
October 2025
High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.
View Article and Find Full Text PDFLab Chip
September 2025
Institute of Integrated Research, Institute of Science Tokyo, R2-9, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa 226-8501, Japan.
Tunability in isolating target cells of varying sizes from complex heterogeneous samples is essential for biomedical research and diagnostics. However, conventional deterministic lateral displacement (DLD) systems lack flexibility due to their fixed critical diameters (). Here, we present a thermo-responsive DLD micropillar array that enables tunable cell separation by dynamically modulating through temperature control.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
The disparity between the global increase in life expectancy and the steady decline in health outcomes with age has been a major driver for developing new ways to research aging. Although this current tools for studying aging outside of the human body-such as animal models and cells in a dish-have improved this fundamental understanding of the markers and key mechanisms underlying this process, several limitations remain. Animal models are poor biological representations of humans and have a weak track record of translating pre-clinical results into successful clinical applications.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Mathematics, Northwest University, Xi'an, China.
This study sought to enhance visual acuity assessment using steady-state visual evoked potentials (SSVEPs) through subject-specific training methods. SSVEPs were elicited from eleven subjects using the vertical sinusoidal gratings at six various spatial frequency steps, and then the classical approach of Oz single-channel, the spatial filtering method of canonical correlation analysis (CCA), and five subject-specific training methods, i.e.
View Article and Find Full Text PDF