Comparative molecular and physiological analyses of organisms from one taxonomic group grown under similar conditions offer a strategy to identify gene targets for trait improvement. While this strategy can also be performed in silico using genome-scale metabolic models for the compared organisms, we continue to lack solutions for the de novo generation of such models, particularly for eukaryotes. To facilitate model-driven identification of gene targets for growth improvement in green algae, here we present a semiautomated platform for de novo generation of genome-scale algal metabolic models.
View Article and Find Full Text PDFIntroduction: Flux phenotypes from different organisms and growth conditions allow better understanding of differential metabolic networks functions. Fluxes of metabolic reactions represent the integrated outcome of transcription, translation, and post-translational modifications, and directly affect growth and fitness. However, fluxes of intracellular metabolic reactions cannot be directly measured, but are estimated via metabolic flux analysis (MFA) that integrates data on isotope labeling patterns of metabolites with metabolic models.
View Article and Find Full Text PDFNew Phytol
February 2024
Chlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination.
View Article and Find Full Text PDFThe flux in photosynthesis can be studied by performing CO pulse labelling and analysing the temporal labelling kinetics of metabolic intermediates using gas or liquid chromatography linked to mass spectrometry. Metabolic flux analysis (MFA) is the primary approach for analysing metabolic network function and quantifying intracellular metabolic fluxes. Different MFA approaches differ based on the metabolic state (steady vs.
View Article and Find Full Text PDFSemin Cell Dev Biol
March 2024
Maintaining proper metabolite levels in a complex metabolic network is crucial for maintaining a high flux through the network. In this paper, we discuss major regulatory mechanisms over the Calvin Benson Cycle (CBC) with regard to their roles in conferring homeostasis of metabolite levels in CBC. These include: 1) Redox regulation of enzymes in the CBC on one hand ensures that metabolite levels stay above certain lower bounds under low light while on the other hand increases the flux through the CBC under high light.
View Article and Find Full Text PDFIntroduction: During the arms race between plants and pathogens, pathogenesis-related proteins (PR) in host plants play a crucial role in disease resistance, especially PR1. PR1 constitute a secretory peptide family, and their role in plant defense has been widely demonstrated in both hosts and in vitro. However, the mechanisms by which they control host-pathogen interactions and the nature of their targets within the pathogen remain poorly understood.
View Article and Find Full Text PDFPhotosynthesis-related pathways are regarded as a promising avenue for crop improvement. Whilst empirical studies have shown that photosynthetic efficiency is higher in microalgae than in C or C crops, the underlying reasons remain unclear. Using a tailor-made microfluidics labelling system to supply CO at steady state, we investigated in vivo labelling kinetics in intermediates of the Calvin Benson cycle and sugar, starch, organic acid and amino acid synthesis pathways, and in protein and lipids, in Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii, which is the fastest growing green alga on record.
View Article and Find Full Text PDFBotany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses.
View Article and Find Full Text PDFPhotosynthesis in deserts is challenging since it requires fast adaptation to rapid night-to-day changes, that is, from dawn's low light (LL) to extreme high light (HL) intensities during the daytime. To understand these adaptation mechanisms, we purified photosystem I (PSI) from Chlorella ohadii, a green alga that was isolated from a desert soil crust, and identified the essential functional and structural changes that enable the photosystem to perform photosynthesis under extreme high light conditions. The cryo-electron microscopy structures of PSI from cells grown under low light (PSI) and high light (PSI), obtained at 2.
View Article and Find Full Text PDFThe unparalleled performance of Chlorella ohadii under irradiances of twice full sunlight underlines the gaps in our understanding of how the photosynthetic machinery operates, and what sets its upper functional limit. Rather than succumbing to photodamage under extreme irradiance, unique features of photosystem II function allow C. ohadii to maintain high rates of photosynthesis and growth, accompanied by major changes in composition and cellular structure.
View Article and Find Full Text PDFCurr Biol
August 2017
The factors rate-limiting growth of photosynthetic organisms under optimal conditions are controversial [1-8]. Adaptation to extreme environments is usually accompanied by reduced performance under optimal conditions [9, 10]. However, the green alga Chlorella ohadii, isolated from a harsh desert biological soil crust [11-17], does not obey this rule.
View Article and Find Full Text PDFEnviron Microbiol
February 2017
Filamentous cyanobacteria are the main founders and primary producers in biological desert soil crusts (BSCs) and are likely equipped to cope with one of the harshest environmental conditions on earth including daily hydration/dehydration cycles, high irradiance and extreme temperatures. Here, we resolved and report on the genome sequence of Leptolyngbya ohadii, an important constituent of the BSC. Comparative genomics identified a set of genes present in desiccation-tolerant but not in dehydration-sensitive cyanobacteria.
View Article and Find Full Text PDFOrganisms inhabiting biological soil crusts (BSCs) are able to cope with extreme environmental conditions including daily hydration/dehydration cycles, high irradiance and extreme temperatures. The photosynthetic machinery, potentially the main source of damaging reactive oxygen species during cessation of CO(2) fixation in desiccating cells, must be protected to avoid sustained photodamage. We compared certain photosynthetic parameters and the response to excess light of BCS-inhabiting, desiccation-tolerant cyanobacteria Leptolyngbya ohadii and Nostoc reinholdii with those observed in the "model" organisms Nostoc sp.
View Article and Find Full Text PDFExcess illumination damages the photosynthetic apparatus with severe implications with regard to plant productivity. Unlike model organisms, the growth of Chlorella ohadii, isolated from desert soil crust, remains unchanged and photosynthetic O2 evolution increases, even when exposed to irradiation twice that of maximal sunlight. Spectroscopic, biochemical and molecular approaches were applied to uncover the mechanisms involved.
View Article and Find Full Text PDFEnvironmental research often faces two major hurdles: (i) fluctuating spatial and temporal conditions and consequently large variability in the organisms' abundance and performance, and (ii) complex, costly logistics involved in field experiments. Measurements of physiological parameters or molecular analyses often represent single shot experiments. To study desiccation acclimation of filamentous cyanobacteria, the founders and main primary producers in desert biological soil crusts (BSC), we constructed an environmental chamber that can reproducibly and accurately simulate ambient conditions and measure microorganism performance.
View Article and Find Full Text PDFEnviron Microbiol
February 2016
Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity.
View Article and Find Full Text PDFFEMS Microbiol Ecol
December 2013
We recently isolated a small green alga from a biological sand crust (BSC) in the NW Negev, Israel. Based on its 18S rRNA and rbcL genes, it is a close relative of Chlorella sorokiniana and of certain strains of C. vulgaris and C.
View Article and Find Full Text PDF