Dynamic deuterium (H)-MRSI enables mapping of metabolic fluxes in vivo, but its sensitivity is hampered by the low H gyromagnetic ratio and H-labelled metabolite concentrations. Low-rank denoising can enhance MRSI sensitivity by separating signal from noise. Several methods have been proposed, but the optimal approach for dynamic H-MRSI remains unclear.
View Article and Find Full Text PDFObjectives: Deuterium (2H) metabolic imaging (DMI) is an emerging magnetic resonance technique to non-invasively map human brain glucose (Glc) uptake and downstream metabolism following oral or intravenous administration of 2H-labeled Glc. The achievable spatial resolution is limited due to inherently low sensitivity of DMI. This hinders potential clinical translation.
View Article and Find Full Text PDFObjectives: Deuterium (H) Metabolic Imaging (DMI) is an emerging magnetic resonance technique to non-invasively map human brain glucose (Glc) uptake and downstream metabolism following oral or intravenous administration of H-labeled Glc. The achievable spatial resolution is limited due to inherently low sensitivity of DMI. This hinders potential clinical translation.
View Article and Find Full Text PDFDeuterium metabolic imaging (DMI) is an emerging Magnetic Resonance technique providing valuable insight into the dynamics of cellular glucose (Glc) metabolism of the human brain in vivo using deuterium-labeled (H) glucose as non-invasive tracer. Reliable concentration estimation of H-Glc and downstream synthesized neurotransmitters glutamate + glutamine (Glx) requires accurate knowledge of relaxation times, but so far tissue-specific T and T relaxation times (e.g.
View Article and Find Full Text PDFDeuterium metabolic imaging (DMI) is an emerging magnetic resonance technique, for non-invasive mapping of human brain glucose metabolism following oral or intravenous administration of deuterium-labeled glucose. Regional differences in glucose metabolism can be observed in various brain pathologies, such as Alzheimer's disease, cancer, epilepsy or schizophrenia, but the achievable spatial resolution of conventional phase-encoded DMI methods is limited due to prolonged acquisition times rendering submilliliter isotropic spatial resolution for dynamic whole brain DMI not feasible. The purpose of this study was to implement non-Cartesian spatial-spectral sampling schemes for whole-brain H FID-MR Spectroscopic Imaging to assess time-resolved metabolic maps with sufficient spatial resolution to reliably detect metabolic differences between healthy gray and white matter regions.
View Article and Find Full Text PDF