FLT3 inhibitors and novel therapeutic strategies to reverse AML resistance: An updated comprehensive review.

Crit Rev Oncol Hematol

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Leahy Drive, Notre Dame, IN 46556, USA.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.critrevonc.2023.104139DOI Listing

Publication Analysis

Top Keywords

flt3 inhibitors
16
flt3
8
novel therapeutic
8
therapeutic strategies
8
strategies reverse
8
aml patients
8
flt3-itd amls
8
amls flt3
8
inhibitors novel
4
aml
4

Similar Publications

Background: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive form of peripheral T-cell lymphoma, accounting for 1 - 2% of non-Hodgkin lymphomas. Diagnosis is challenging, and there is no established standard first-line treatment. This case report highlights a rare progression from AITL to therapy-related acute myeloid leukemia (AML-pCT) following cytotoxic chemotherapy.

View Article and Find Full Text PDF

Opinion Letter to Sin et al (Science Advances, 2025), Sorbate induces lysine sorbylation through noncanonical activities of class I HDACs to regulate the expression of inflammation genes.

View Article and Find Full Text PDF

Discovery of APS03118, a Potent and Selective Next-Generation RET Inhibitor with a Novel Kinase Hinge Scaffold.

J Med Chem

September 2025

Applied Pharmaceutical Science, Inc., Building 10-1, No.2, Jingyuan North Street, BDA, Beijing 100176, China.

This study reports the discovery and preclinical activity of APS03118, a novel selective RET inhibitor featuring a novel tricyclic pyrazolo[3',4':3,4]pyrazolo[1,5-]pyridine hinge-binding scaffold designed to overcome acquired resistance to first-generation selective RET inhibitors (SRIs). By enhancing hydrogen bonding with conserved hinge residues (Glu805, Ala807), APS03118 potently inhibits wild-type RET and diverse resistance mutations, including solvent-front (G810R/S/C), gatekeeper (V804M/L/E), roof (L730I/M), and hinge (Y806C/N/H) variants. In preclinical models, APS03118 induced complete tumor regression in KIF5B-RET and CCDC6-RET V804 M patient-derived xenografts (PDXs) and significantly prolonged survival in an intracranial CCDC6-RET metastasis model.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS), particularly in older adults aged 60 years and above, present significant therapeutic challenges due to poor prognosis and limited treatment options. Higher-risk MDS (HR-MDS), defined by the Revised International Prognostic Scoring System score of ⩾3.5, is characterized by increased myeloblasts, severe cytopenia, and a median survival of <2 years.

View Article and Find Full Text PDF

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF