A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning applied to the histopathological diagnosis of ameloblastomas and ameloblastic carcinomas. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Odontogenic tumors (OT) are composed of heterogeneous lesions, which can be benign or malignant, with different behavior and histology. Within this classification, ameloblastoma and ameloblastic carcinoma (AC) represent a diagnostic challenge in daily histopathological practice due to their similar characteristics and the limitations that incisional biopsies represent. From these premises, we wanted to test the usefulness of models based on artificial intelligence (AI) in the field of oral and maxillofacial pathology for differential diagnosis. The main advantages of integrating Machine Learning (ML) with microscopic and radiographic imaging is the ability to significantly reduce intra-and inter observer variability and improve diagnostic objectivity and reproducibility.

Methods: Thirty Digitized slides were collected from different diagnostic centers of oral pathology in Brazil. After performing manual annotation in the region of interest, the images were segmented and fragmented into small patches. In the supervised learning methodology for image classification, three models (ResNet50, DenseNet, and VGG16) were focus of investigation to provide the probability of an image being classified as class0 (i.e., ameloblastoma) or class1 (i.e., Ameloblastic carcinoma).

Results: The training and validation metrics did not show convergence, characterizing overfitting. However, the test results were satisfactory, with an average for ResNet50 of 0.75, 0.71, 0.84, 0.65, and 0.77 for accuracy, precision, sensitivity, specificity, and F1-score, respectively.

Conclusions: The models demonstrated a strong potential of learning, but lack of generalization ability. The models learn fast, reaching a training accuracy of 98%. The evaluation process showed instability in validation; however, acceptable performance in the testing process, which may be due to the small data set. This first investigation opens an opportunity for expanding collaboration to incorporate more complementary data; as well as, developing and evaluating new alternative models.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jop.13481DOI Listing

Publication Analysis

Top Keywords

models
5
deep learning
4
learning applied
4
applied histopathological
4
histopathological diagnosis
4
diagnosis ameloblastomas
4
ameloblastomas ameloblastic
4
ameloblastic carcinomas
4
carcinomas background
4
background odontogenic
4

Similar Publications