98%
921
2 minutes
20
Tin-based perovskite solar cells (T-PSCs) have become the star photovoltaic products in recent years due to their low environmental toxicity and superior photovoltaic performance. However, the easy oxidation of Sn and the energy level mismatch between the perovskite film and charge transport layer limit its efficiency. In order to regulate the microstructure and photoelectric properties of tin-based perovskite films to enhance the efficiency and stability of T-PSCs, guanidinium bromide (GABr) and organic Lewis-based additive methylamine cyanate (MAOCN) are introduced into the FAPEASnI-based perovskite precursor. A series of characterizations show that the interactions between additive molecules and perovskite mutually reconcile to improve the photovoltaic performance of T-PSCs. The introduction of GABr can adjust the band gap of the perovskite film and energy level alignment of T-PSCs. They significantly increase the open-circuit voltage (). The MAOCN material can form hydrogen bonds with SnI in the precursor, which can inhibit the oxidation of Sn and significantly improve the short-circuit current density (). The synergistic modulation of the dual additives reduces the trap-state density and improves photovoltaic performance, resulting in an increased champion efficiency of 9.34 for 5.22% of the control PSCs. The unencapsulated T-PSCs with GABr and MAOCN dual additives prepared in the optimized process can retain more than 110% of their initial efficiency after aging for 1750 h in a nitrogen glovebox, but the control PSCs maintain only 50% of their initial efficiency kept in the same conditions. This work provides a new perspective to further improve the efficiency and stability of T-PSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c11009 | DOI Listing |
J Phys Chem Lett
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China.
A highly sensitive, self-powered position-sensitive detector (PSD) based on a PEDOT:PSS/Si heterojunction is prepared. Band structure optimization via FS-300 additive doping significantly enhances the built-in electric field, achieving a maximum open-circuit voltage of 0.45 V (0.
View Article and Find Full Text PDFSmall
September 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.
View Article and Find Full Text PDFRSC Adv
September 2025
School of Engineering and Technology, National Textile University 37640 Faisalabad Pakistan
[This retracts the article DOI: 10.1039/D4RA01544D.].
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
M. Kumarasamy College of Engineering, Karur, 639113, Tamil Nadu, India.
Energy production from renewable resources remains a leading focus in sustainable power generation. Recently, bifacial photovoltaic (BPV) systems have gained global attention for their enhanced energy yield. In this study, seashell waste was repurposed as an alternative reflector material for BPV modules.
View Article and Find Full Text PDFNanomicro Lett
September 2025
College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.
The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.
View Article and Find Full Text PDF