Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: To date, no study has systematically explored the potential role of serum metabolites and lipids in the diagnosis of small cell lung cancer (SCLC). Therefore, we aimed to conduct a case-cohort study that included 191 cases of SCLC, 91 patients with lung adenocarcinoma, 82 patients with squamous cell carcinoma, and 97 healthy controls.

Methods: Metabolomics and lipidomics were applied to analyze different metabolites and lipids in the serum of these patients. The SCLC diagnosis model (d-model) was constructed using an integrated machine learning technology and a training cohort (n = 323) and was validated in a testing cohort (n=138).

Results: Eight metabolites, including 1-mristoyl-sn-glycero-3-phosphocholine, 16b-hydroxyestradiol, 3-phosphoserine, cholesteryl sulfate, D-lyxose, dioctyl phthalate, DL-lactate and Leu-Phe, were successfully selected to distinguish SCLC from controls. The d-model was constructed based on these 8 metabolites and showed improved diagnostic performance for SCLC, with the area under curve (AUC) of 0.933 in the training cohort and 0.922 in the testing cohort. Importantly, the d-model still had an excellent diagnostic performance after adjusting the stage and related clinical variables and, combined with the progastrin-releasing peptide (ProGRP), showed the best diagnostic performance with 0.975 of AUC for limited-stage patients.

Conclusion: This study is the first to analyze the difference between metabolomics and lipidomics and to construct a d-model to detect SCLC using integrated machine learning. This study may be of great significance for the screening and early diagnosis of SCLC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911920PMC
http://dx.doi.org/10.1093/oncolo/oyad261DOI Listing

Publication Analysis

Top Keywords

integrated machine
12
machine learning
12
diagnostic performance
12
small cell
8
cell lung
8
lung cancer
8
metabolites lipids
8
sclc patients
8
metabolomics lipidomics
8
d-model constructed
8

Similar Publications

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF

This study utilized integrated sensory-guided, machine learning, and bioinformatics strategies identify umami-enhancing peptides from , investigated their mechanism of umami enhancement, and confirmed their umami-enhancing properties through sensory evaluations and electronic tongue. Three umami-enhancing peptides (APDGLPTGQ, SDDGFQ, and GLGDDL) demonstrated synergistic/additive effects by significantly enhancing umami intensity and duration in monosodium glutamate (MSG). Furthermore, molecular docking showed that these umami-enhancing peptides enhanced both the binding affinity and interaction forces between MSG and the T1R1/T1R3 receptor system, thereby enhancing umami perception.

View Article and Find Full Text PDF

Background: Falls are a major cause of injury and death among the elderly, highlighting the need for effective and real-time detection systems. Embedded Internet of Health Things (IoHT) technologies integrating sensors, microcontrollers, and communication modules offer continuous monitoring and rapid response. However, the research landscape remains fragmented, and no comprehensive bibliometric review has been conducted.

View Article and Find Full Text PDF