Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Novel electrolyte systems are required to further improve the performance and ensure the safety of lithium-ion batteries. Lithium-monochelated borates with trifluoromethylated ligands are used as electrolytes for lithium-ion batteries (LIBs) with a lithium bis(oxalato)borate (LiBOB) additive. The capacity decay and extremely high resistance after the cycle test at 60 °C are dramatically suppressed by the addition of LiBOB. Half-cell measurements, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) suggested that the reductive decomposition products of the electrolytes at the negative electrode significantly increased the resistance at the positive electrode, which originated from the crosstalk of the decomposition species formed at the negative electrode. Further analysis confirmed the importance of the LiBOB-derived solid electrolyte interphase (SEI) at the negative electrode, which suppressed the formation of crosstalk species at the negative electrode and effectively suppressed the increase in resistance of the positive electrode. This study provides a reliable and promising approach for designing high-performance electrolytes with lithium borate and emphasizes the importance of considering the reactions occurring at both electrodes to improve battery performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472978PMC
http://dx.doi.org/10.1039/d3ra02381hDOI Listing

Publication Analysis

Top Keywords

negative electrode
16
libob additive
8
lithium-ion batteries
8
resistance positive
8
positive electrode
8
electrode
6
impact libob
4
additive cycle-performance
4
cycle-performance degradation
4
degradation lithium
4

Similar Publications

Electronic textiles are a transformative technology set to revolutionize next-generation wearable devices. However, a major challenge is making efficient yarn-based energy systems that power flexible wearables while blending seamlessly into textiles for unobstructed applications. Herein, 2D materials-coated yarn supercapacitors (YSCs) are designed, offering a promising solution through capacitance-matched electrode fabrication and a novel customizable riveted interconnection strategy for textile integration.

View Article and Find Full Text PDF

Designing heterostructure-based nanocomposites has gained considerable interest in solving energy scarcity and environmental contamination issues. Herein, a heterojunction assembly of ternary SnS/MoS/g-CN nanocomposites with varying Sn and Mo weight ratios was synthesized through a single-step hydrothermal method. At an optimized ratio of tin to molybdenum (1 : 2), denoted as SM-3, promising electrochemical and photocatalytic performances were observed compared to bare SnS/g-CN and MoS/g-CN.

View Article and Find Full Text PDF

A Low-Voltage-Driven Droplet Sorter for High-Stability and Small-Deformation Droplet Sorting.

Electrophoresis

September 2025

School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing, China.

Electric droplet sorting is widely applied in the screening of target molecules, cells, drugs, and microparticles. Previous studies have made several optimizations on the electrode materials, structures, and arrangements. However, voltages of over 1 kV are required to realize droplet sorting, which causes the undesired droplet splitting.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) imaging of ionic liquid (IL) distribution in electric double-layer (EDL) devices has been actively explored to understand the origin of their excellent performance. However, this has been impeded by insufficient resolution or a poor understanding of the mechanisms of 3D IL imaging. Here, we overcome these difficulties using 3D scanning force microscopy (3D-SFM) with variable tip/sample bias voltages for visualizing 3D ,-diethyl--methyl--(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI) distributions on a Au electrode in EDL capacitors.

View Article and Find Full Text PDF

Spectro-Electrochemical Insights into Electrocatalytic CO Reduction in Acidic Media through Model Catalyst Design.

J Am Chem Soc

September 2025

Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China.

Electrocatalytic CO reduction (eCOR) under acidic conditions is the game changer of resourceful CO utilization owing to the alleviated carbon loss but faces severe competition from the hydrogen evolution reaction (HER) that greatly curtails the electric current efficiency. Leveraging the eCOR side of the teeterboard calls for a fundamental understanding of the triphasic electrode process involving a complex arrangement of electric double layers (EDLs). Herein, a series of model catalysts with tailored cavernous parameters are fabricated to geometrically and spectroscopically decipher the competing HER and eCOR processes that engage different proton sources.

View Article and Find Full Text PDF