Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Backgrounds/aims: Liver organoids have emerged as a powerful tool for studying liver biology and disease and for developing new therapies and regenerative medicine approaches. For organoid culture, Matrigel, a type of extracellular matrix, is the most commonly used material. However, Matrigel cannot be used for clinical applications due to the presence of unknown proteins that can cause immune rejection, batch-to-batch variability, and angiogenesis.

Methods: To obtain human primary hepatocytes (hPHs), we performed 2 steps collagenase liver perfusion protocol. We treated three small molecules cocktails (A83-01, CHIR99021, and HGF) for reprogramming the hPHs into human chemically derived hepatic progenitors (hCdHs) and used hCdHs to generate liver organoids.

Results: In this study, we report the generation of liver organoids in a collagen scaffold using hCdHs. In comparison with adult liver (or primary hepatocyte)-derived organoids with collagen scaffold (hALO_C), hCdH-derived organoids in a collagen scaffold (hCdHO_C) showed a 10-fold increase in organoid generation efficiency with higher expression of liver- or liver progenitor-specific markers. Moreover, we demonstrated that hCdHO_C could differentiate into hepatic organoids (hCdHO_C_DM), indicating the potential of these organoids as a platform for drug screening.

Conclusions: Overall, our study highlights the potential of hCdHO_C as a tool for liver research and presents a new approach for generating liver organoids using hCdHs with a collagen scaffold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700938PMC
http://dx.doi.org/10.14701/ahbps.23-052DOI Listing

Publication Analysis

Top Keywords

collagen scaffold
20
liver organoids
16
organoids collagen
16
liver
10
generation efficiency
8
organoids
8
human chemically
8
chemically derived
8
derived hepatic
8
hepatic progenitors
8

Similar Publications

Bioactive hydroxyapatite-sodium silicate waterglass reinforced with nanocollagen from Chitala ornata fish skin for bone engineering.

Int J Biol Macromol

September 2025

The Materials Engineering Department, Faculty of Engineering, Kasetsart University, Phaholyothin Rd., Bangkok 10900, Thailand. Electronic address:

A prototype bioactive calcium phosphate model-specifically hydroxyapatite (HA) derived from eggshells-was developed using a sodium silicate (NaSiO) solution as an inorganic binder, precursor, and reinforcing agent, in combination with collagen nanofibers for bone engineering applications. The sodium silicate solution, functioning as a waterglass adhesive, introduced cohesive forces within the hydroxyapatite matrix, thereby enhancing its physical, chemical, and mechanical properties. Eggshell-derived bioactive hydroxyapatite offers several advantages, including non-toxicity, biocompatibility, collagen adhesion, and the ability to mimic bone structure, making it suitable for tissue engineering.

View Article and Find Full Text PDF

The utilization of plant extracts in combination with various nanomaterials for treating polymicrobial wound infections represents a novel approach in overcoming the problem of antimicrobial resistance through its multi-targeted mechanism of action. The present study investigates the potential of plant extract for the green synthesis of AgZnO bimetallic nanoparticles (BMNPs). The nanoparticles obtained were characterized and the UV-Vis studies demonstrated peaks at 361 and 371 nm which were characteristic of silver and zinc oxide nanoparticles while a size range of 5-15 nm was revealed in the HR TEM studies, and the presence of crystalline ZnO and surface decorated Ag nanoparticles was observed in the diffraction patterns.

View Article and Find Full Text PDF

A Human Progenitor Cell-Based Tissue Engineered Intervertebral Disc.

Tissue Eng Part A

September 2025

Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Cell and tissue engineering therapies provide promise for regenerating damaged intervertebral disc (IVD) tissue and resolving the low back pain that often accompanies it. However, these treatments remain experimental and unavailable for patients. Furthermore, the large body of work characterizing and utilizing mesenchymal stromal cells (MSCs) for these applications has, unfortunately, not resulted in any FDA-approved spinal therapies.

View Article and Find Full Text PDF

Shape Memory Collagen Scaffolds Sustain Large-Scale Cyclic Loading.

ACS Mater Lett

September 2025

Preventive and Restorative Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Natural biopolymer hydrogels often suffer from relatively low moduli and an inability to maintain structure and mechanics under cyclic loading, limiting their utility in dynamic mechanical environments. Here, a cross-linked collagen cryogel scaffold was fabricated by precompression to densify the network. Following lyophilization, the porous scaffolds sustained >90% axial compressive strain with 200 cycles.

View Article and Find Full Text PDF

Background: A decellularized liver scaffold (DLS) is a three-dimensional acellular extracellular matrix created by removing cellular components from liver tissue. Hepatocellular carcinoma (HCC) organoids represent a useful experimental model.

Methods: HCC organoids from patient-derived xenografts (PDX), liver organoids, and HepG2 cells were expanded by cultivation within a murine DLS.

View Article and Find Full Text PDF