98%
921
2 minutes
20
Ambient fine particulate matter (PM) is the world's leading environmental health risk factor. Quantification is needed of regional contributions to changes in global PM exposure. Here we interpret satellite-derived PM estimates over 1998-2019 and find a reversal of previous growth in global PM air pollution, which is quantitatively attributed to contributions from 13 regions. Global population-weighted (PW) PM exposure, related to both pollution levels and population size, increased from 1998 (28.3 μg/m) to a peak in 2011 (38.9 μg/m) and decreased steadily afterwards (34.7 μg/m in 2019). Post-2011 change was related to exposure reduction in China and slowed exposure growth in other regions (especially South Asia, the Middle East and Africa). The post-2011 exposure reduction contributes to stagnation of growth in global PM-attributable mortality and increasing health benefits per µg/m marginal reduction in exposure, implying increasing urgency and benefits of PM mitigation with aging population and cleaner air.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475088 | PMC |
http://dx.doi.org/10.1038/s41467-023-41086-z | DOI Listing |
Environ Res
September 2025
Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China; National Institute of Health Data Science, Peking University, Beijing 100191, China; Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology, Beijing 1
Objective: The impact of desert-originated dust has been underestimated in fine particulate matters (PM)-related disease burden studies. This study aimed to assess the association of long-term dust PM exposure and all-cause mortality among older adults in China.
Methods: A cohort study using electronic health records (2010-2020) across Weinan, a city in northwest China, which experiences persistently high PM levels and frequent sand and dust storms, included 1,553,724 adults aged ≥45 years.
Environ Res
September 2025
Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.
Background: Fine particulate matter (PM) has been previously linked to cardiovascular diseases (CVDs). PM is a mixture of components, each of which has its own toxicity profile which are not yet well understood. This study explores the relationship between long-term exposure to PM components and hospital admissions with CVDs in the Medicare population.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Department of Sanitary and Environmental Engineering. Federal University of Santa Catarina, Santa Catarina, Brazil. Electronic address:
Controlling vehicular emissions is a critical priority, particularly in developing countries like Brazil, where the vehicular fleet has expanded significantly. Although Brazil's Program to Control Vehicular Emissions has reduced certain air pollutants by mandating technological advancements in new vehicles, it did not consider the substantial increase in vehicle numbers and density across the country. To date, no comprehensive national-scale evaluation has been conducted to assess the program's effectiveness in Brazil.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
September 2025
New York State Department of Environmental Conservation, Division of Air Resources, Albany, NY, USA.
New York State has enacted public policies that have enabled a multi-decadal trend in air quality improvement. However, the benefits of cleaner air are not felt equally across the populace, with individuals residing in disadvantaged communities bearing disproportionate air pollution burdens due to proximity of polluting sources, in addition to other environmental stressors. To address this disparity, the New York State Department of Environmental Conservation contracted with Aclima, Inc.
View Article and Find Full Text PDFPublic Health Res (Southampt)
September 2025
Senior Housing Renewal Officer, Fairer Housing Unit, Civic Centre, Newcastle upon Tyne, UK.
Background: Tackling climate change, together with improving indoor air quality, offers a significant opportunity to improve residents' health and well-being. This requires the evidence base to inform an energy-efficient retrofit design.
Objectives: (i) To develop a protocol that could be implemented by local authorities across a range of housing typologies and (ii) to deploy this protocol to establish baseline conditions in = 30 homes ahead of energy-efficient retrofitting.