98%
921
2 minutes
20
This study presents a novel and efficient method for the extraction of Al, Ca, Cr, Cu, K, Mg, Mn, and Zn in vegetable oil samples using a Natural Deep Eutectic Solvent (NADES) as an extractor combined with microwave radiation (MW) in an emulsion system. The NADES prepared with choline chloride:oxalic acid:water (1:1:4 molar ratio) provided a high extraction rate using 5.0 mL of the sample, 1.7 mL of NADES, and 1.3 mL of Triton X-100. The optimum conditions were obtained with 36 s of vortexing, 5 min of extraction, and 10 s for emulsion-breaking in MW. Under these conditions, recoveries ranged from 91% to 110% and relative standard deviations <9.0% were obtained. The limit of quantification (mg kg) was: 0.018 (Al), 0.032 (Ca), 0.007 (Cr), 0.006 (Cu), 0.013 (K), 0.027 (Mg), 0.002 (Mn), and 0.019 (Zn). The proposed method showed comparable results to reference methods and advantages, such as speed, low cost, and simplicity. The combination of NADES and MW represents a sustainable and innovative approach to the elemental determination composition of vegetable oils and contributes to advances in sample preparation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.125108 | DOI Listing |
Adv Mater
September 2025
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.
The generation of coherent deep-ultraviolet (DUV) radiation via nonlinear frequency conversion remains a major scientific and technological challenge in modern optics. To date, only a very limited number of nonlinear optical (NLO) crystals-such as KBBF, ABF, and quartz-have been experimentally demonstrated to support measurable direct second-harmonic generation (SHG) at wavelengths of 177 nm or shorter. There is a pressing need to develop alternative materials or strategies that enable efficient frequency conversion in the DUV region.
View Article and Find Full Text PDFAnat Sci Educ
September 2025
Human Anatomy, Vita-Salute San Raffaele University, Milan, Italy.
As emerging technologies reshape both the body and how we represent it, anatomical education stands at a threshold. Virtual dissection tools, AI-generated images, and immersive platforms are redefining how students learn anatomy, while real-world bodies are becoming hybridized through implants, neural interfaces, and bioengineered components. This Viewpoint explores what it means to teach human anatomy when the body is no longer entirely natural, and the image is no longer entirely real.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:
Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.
View Article and Find Full Text PDFBioresour Technol
September 2025
Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; Technology Innovation Center for High-Efficiency Utilization of Bamboo-Based Biomass in Guizhou Province, Guiyang 550025, China. Electronic address:
Worldwide, marine shell waste generated from the seafood industry has emerged as a significant environmental challenge. Indeed, this shell waste represents an abundant source of various valuable products, particularly chitin. However, the extraction and subsequent processing of chitin are hindered by the inherently resistant structure of these chitin-rich feedstocks, coupled with strong hydrogen bonding between chitin chains.
View Article and Find Full Text PDFMar Environ Res
September 2025
Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,
Simultaneous measurements of dimethylsulfide (DMS) and isoprene in seawater and the overlying atmosphere were conducted in the tropical western Pacific Ocean during February-March 2017. Surface seawater exhibited a strong correlation between DMS and dimethylsulfoniopropionate (DMSP), with similar spatial distributions, whereas dimethylsulfoxide (DMSO) displayed an opposing trend. Latitudinal and vertical profiles of DMS, DMSP, and isoprene revealed their pronounced dependence on biological factors, particularly in subsurface layers.
View Article and Find Full Text PDF