98%
921
2 minutes
20
A recent outbreak of the mpox virus (MPXV) occurred in non-endemic regions of the world beginning in May 2022. Pathogen surveillance systems faced pressure to quickly establish response protocols, offering an opportunity to employ wastewater-based epidemiology (WBE) for population-level monitoring. The pilot study reported herein aimed to: (i) develop a reliable protocol for MPXV DNA detection in wastewater which would reduce false negative reporting, (ii) test this protocol on wastewater from various regions across the United States, and (iii) conduct a state of the science review of the current literature reporting on experimental methods for MPXV detection using WBE. Twenty-four-hour composite samples of untreated municipal wastewater were collected from the states of New Jersey, Georgia, Illinois, Texas, Arizona, and Washington beginning July 3rd, 2022 through October 16th, 2022 (n = 60). Samples underwent vacuum filtration, DNA extraction from captured solids, MPXV DNA pre-amplification, and qPCR analysis. Of the 60 samples analyzed, a total of eight (13%) tested positive for MPXV in the states of Washington, Texas, New Jersey, and Illinois. The presence of clade IIb MPXV DNA in these samples was confirmed via Sanger sequencing and integration of pre-amplification prior to qPCR decreased the rate of false negative detections by 87% as compared to qPCR analysis alone. Wastewater-derived detections of MPXV were compared to clinical datasets, with 50% of detections occurring as clinical cases were increasing/peaking and 50% occurring as clinical cases waned. Results from the literature review (n = 9 studies) revealed successful strategies for the detection of MPXV DNA in wastewater, however also emphasized a need for further method optimization and standardization. Overall, this work highlights the use of pre-amplification prior to qPCR detection as a means to capture the presence of MPXV DNA in community wastewater and offers guidance for monitoring low-titer pathogens via WBE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592092 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2023.166230 | DOI Listing |
J Virol Methods
September 2025
British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:
In 2022, cases of Monkeypox virus (MPXV) in California contained a mutation in the TNF receptor gene (GR2G) that rendered the virus undetectable using a widely adopted public health diagnostic qPCR assay. This underscored the need for a dual-target PCR approach and prompted validation of a second target by the BCCDC Public Health Laboratory. In addition to the GR2G target validated in the original qPCR assay (and duplexed with the endogenous target human β-globin (HBG)), GP113 (OPG128) was identified and validated using both clinical samples and MPXV DNA controls.
View Article and Find Full Text PDFImmunology
September 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
Traditional DNA vaccines, typically administered via intramuscular injection with electroporation (IM-E), often cause discomfort and require trained personnel. Addressing these challenges, we developed multivalent DNA vaccines targeting both intracellular mature virion (IMV) and extracellular enveloped virion (EEV) proteins of the monkeypox virus (MPXV), designated as M2 (A29L, B6R), M3 (A29L, B6R, M1R) and M4 (A29L, B6R, M1R, A35R). These vaccine constructs were formulated into dissolvable microneedle array patches (D-MAPs) for intradermal delivery.
View Article and Find Full Text PDFJ Virol
August 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
The recent surge in global monkeypox (mpox) outbreaks highlights the critical need for developing antiviral agents targeting orthopoxvirus infections. Ibrutinib, a selective Bruton tyrosine kinase (BTK) inhibitor initially approved by the FDA in 2013 for treating chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), has emerged as a potential antiviral candidate based on a high-throughput screening for its efficacy against vaccinia virus (VACV). This study evaluated the antiviral capability of ibrutinib against VACV, mpox virus (MPXV), and lumpy skin disease virus (LSDV), demonstrating its strong antiviral activity against multiple poxviruses.
View Article and Find Full Text PDFNat Commun
August 2025
State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
Mpox poses a heightened risk of severe disease and mortality among individuals with HIV, yet the molecular mechanisms and immunopathology underlying multi-organ damage caused by the mpox virus (MPXV), particularly in the context of HIV co-infection, remain poorly understood. Here, we observe increased MPXV replication, more extensive skin lesions, and impaired humoral and cellular immune responses in SIV-MPXV co-infected rhesus macaques compared to those infected with MPXV alone. Multi-organ proteomic and phosphoproteomic analyses reveals upregulation of proteins involved in immune and inflammatory pathways in skin lesions and across multiple organs, especially in immune-related tissues.
View Article and Find Full Text PDFDiagnostics (Basel)
August 2025
Coris BioConcept, Crealys Science Park, 5032 Gembloux, Belgium.
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats-two liquid versions and a dried, ready-to-use version-targeting only the ORF F3L (Liquid V1) or both the ORF F3L and N4R (Liquid V2 and dried) genomic regions.
View Article and Find Full Text PDF