98%
921
2 minutes
20
Biomining processes utilize microorganisms, such as , to extract valuable metals by producing sulfuric acid and ferric ions that dissolve sulfidic minerals. However, excessive production of these compounds can result in metal structure corrosion and groundwater contamination. Synthetic biology offers a promising solution to improve strains for sustainable, eco-friendly, and cost-effective biomining, but genetic engineering of these slow-growing microorganisms is challenging with current inefficient and time-consuming methods. To address this, we established a CRISPR-dCas9 system for gene knockdown in JAGS, successfully downregulating the transcriptional levels of two genes involved in sulfur oxidation. More importantly, we constructed an all-in-one CRISPR-Cas9 system for fast and efficient genome editing in JAGS, achieving seamless gene deletion (), promoter substitution (Prus to Ptac), and exogenous gene insertion (). Additionally, we created a HdrB-Rus double-edited strain and performed biomining experiments to extract Ni from pyrrhotite tailings. The engineered strain demonstrated a similar Ni recovery rate to wild-type JAGS but with significantly lower production of iron ions and sulfuric acid in leachate. These high-efficient CRISPR systems provide a powerful tool for studying gene functions and creating useful recombinants for synthetic biology-assisted biomining applications in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c02492 | DOI Listing |
Nature
September 2025
Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.
View Article and Find Full Text PDFNat Commun
September 2025
Guangdong Provincial Key Laboratory of Bioengineering Medicine & National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou, 510632, China.
Signal Transduct Target Ther
September 2025
Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.
Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.
View Article and Find Full Text PDFISA Trans
September 2025
School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116, China. Electronic address:
Multi-arm rock drilling robots frequently encounter challenges in extreme environments, such as tunnels, where they are subjected to high-frequency impact loads, multi-degree-of-freedom motion coupling, and large-range motion control vibrations. First, we propose a collision-free path planning method that combines an improved genetic algorithm (IGA) and an improved artificial potential field method. This method is based on the kinematic model of the rock drilling robot.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Expression génétique microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris 75005, France.
Targeted gene editing can be achieved using CRISPR-Cas9-assisted recombineering. However, high-efficiency editing requires careful optimization for each locus to be modified, which can be tedious and time-consuming. In this work, we developed a simple, fast and cheap method: Engineered Assembly of SYnthetic operons for targeted editing (EASY-edit) in Escherichia coli.
View Article and Find Full Text PDF