98%
921
2 minutes
20
Single Li ion conducting polyelectrolytes (SICs), which feature covalently tethered counter-anions along their backbone, have the potential to mitigate dendrite formation by reducing concentration polarization and preventing salt depletion. However, due to their low ionic conductivity and complicated synthetic procedure, the successful validation of these claimed advantages in lithium metal (Li ) anode batteries remains limited. In this study, we fabricated a SIC electrolyte using a single-step UV polymerization approach. The resulting electrolyte exhibited a high Li transference number (t ) of 0.85 and demonstrated good Li conductivity (6.3×10 S/cm at room temperature), which is comparable to that of a benchmark dual ion conductor (DIC, 9.1×10 S/cm). Benefitting from the high transference number of SIC, it displayed a three-fold higher critical current density (2.4 mA/cm ) compared to DIC (0.8 mA/cm ) by successfully suppressing concentration polarization-induced short-circuiting. Additionally, the t significantly influenced the deposition behavior of Li , with SIC yielding a uniform, compact, and mosaic-like morphology, while the low t DIC resulted in a porous morphology with Li whiskers. Using the SIC electrolyte, Li ||LiFePO cells exhibited stable operation for 4500 cycles with 70.5 % capacity retention at 22 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202308309 | DOI Listing |
ACS Biomater Sci Eng
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
The development of biomimetic scaffolds that emulate the extracellular matrix (ECM) is critical for advancing cell-based therapies and tissue regeneration. This study reports the formulation of CHyCoGel, a novel injectable, ECM-mimetic hydrogel scaffold composed of chitosan, hyaluronic acid, chondroitin sulfate, and an amphiphilic stabilizer. CHyCoGel addresses key limitations of existing scaffolds, offering improved structural uniformity, injectability, and gelation suitable for cell encapsulation and minimally invasive delivery.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
HMGB1, a nuclear DNA-binding protein, can be secreted by activated immune cells or passively released from damaged cells. In such cases, HMGB1 functions as an alarmin that activates the immune system. Excessive inflammation may lead to pathogenesis, whereas this response can be dampened by polyanion binding, which impedes further receptor recognition.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
August 2025
Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh. Electronic address:
Polymers with multifunctional capabilities are increasingly important for emerging technologies, particularly in applications requiring electro-responsive behavior. Polyelectrolytes, which are charged polymers, are promising candidates for electrically triggered actuators, artificial muscles, biomedicine, and flexible electronics, where modulation of mechanical properties is crucial for maintaining structural integrity and performance. This study employs molecular dynamics simulations to explore how electric fields influence the mechanical behavior of polyelectrolytes.
View Article and Find Full Text PDFSoft Matter
September 2025
Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
Polyelectrolytes, macromolecules with ionizable groups, play a critical role in applications ranging from energy storage and drug delivery to adhesives, owing to their strong interactions with ionic solutes and water. Despite their widespread utility, an atomistic understanding of how polyelectrolytes interact with ions remains incomplete, limiting the ability to precisely control their conformation and functional properties. To bridge this knowledge gap, we conducted molecular dynamics simulations of two representative polyelectrolytes, poly(vinylbenzyl trimethylammonium chloride) (PVBTACl) and sodium polystyrene sulfonate (NaPSS), across varying salt concentrations.
View Article and Find Full Text PDFSoft Matter
September 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
Electrostatic correlation free energy (ECF) is the basis for modeling the thermodynamic behavior of polyelectrolyte solutions. In the past, it has mainly been estimated using the Edwards approximation, valid for infinite chains. Here, we show that the leading contribution due to finite molecular size is of order , regardless of the fractal dimension , where is proportional to molecular weight.
View Article and Find Full Text PDF