Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood.

Methods: Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma.

Results: Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day.

Significance: Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.17736DOI Listing

Publication Analysis

Top Keywords

hippocampus mice
12
polya tail
12
status epilepticus
12
epilepsy
10
temporal lobe
8
lobe epilepsy
8
mrna polyadenylation
8
mice
8
cpeb4
8
spontaneous seizures
8

Similar Publications

Amongst the major histopathological hallmarks in Alzheimer's disease are intracellular neurofibrillary tangles consisting of hyperphosphorylated and aggregated Tau, synaptic dysfunction, and synapse loss. We have previously shown evidence of synaptic mitochondrial dysfunction in a mouse model of Tauopathy that overexpresses human Tau (hTau). Here, we questioned whether the levels or activity of Parkin, an E3 ubiquitin ligase involved in mitophagy, can influence Tau-induced synaptic mitochondrial dysfunction.

View Article and Find Full Text PDF

Objective: This study aims to investigate the effects of anaesthesia and surgical procedures on the cognitive function of both young and aged mice. It will also explore the role and mechanisms of c-Fos expression in altering hippocampal neuron excitability and its relationship with perioperative neurocognitive disorders in mice.

Methods: In this study, we used a murine laparotomy model to assess cognitive behavioural changes in both young and aged mice at 1, 3, and 7 days post-surgery.

View Article and Find Full Text PDF

Synergistic stress-relieving and cognitive-enhancing effects of walnut peptide and theanine in human brain organoid and mouse stress models.

Phytomedicine

August 2025

Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Background: Stress is a prevalent mental health concern that often emerges in late adolescence or early adulthood. Since 2007, the Food and Drug Administration (FDA) has not approved any novel anxiolytic pharmaceuticals, leading to increased interest in nutritional supplements as alternative therapies for stress management.

Purpose: Building on our previous study, this work aims to investigate the synergistic effects of Theanine (Th) and Walnut Peptide (WP) on stress mitigation and cognitive enhancement.

View Article and Find Full Text PDF

Long chain ceramides promote Anxiety-like behavior and microglia activation in female mice.

Arch Med Res

September 2025

Universidad Autónoma de Nuevo León, College of Medicine, Biochemistry and Molecular Medicine Department, Monterrey, Mexico; Universidad Autónoma de Nuevo León, Center for Research and Development in Health Sciences, Neurometabolism Unit, Monterrey, Mexico. Electronic address:

Background: Long-chain ceramides have been implicated in anxiety-like behavior and in priming microglial activation, suggesting a possible lipid-immune crosstalk in emotional regulation.

Methods: We systemically administered a mixture of C16:0, C18:0, C22:0, C24:0, and C24:1 ceramides to adult male and female mice. Anxiety-like behavior was assessed with behavioral tests.

View Article and Find Full Text PDF

Enriched Environment Alleviate AD Pathological Progression by Reducing Microglia Complement Signaling in Aged Male APP/PS1 Mice.

FASEB J

September 2025

Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.

Alzheimer's disease (AD) is influenced by genetic and environmental factors. Previous studies showed that enriched environments improved memory and reduced amyloid plaques in AD mice, but the underlying mechanisms remain unclear. This study investigated the effects and mechanisms of enriched environments on AD pathology and cognitive function in aged APP/PS1 mice.

View Article and Find Full Text PDF