Publications by authors named "Alberto Parras"

In vivo reprogramming through the forced expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) has demonstrated great potential for reversing age-associated phenotypes. However, continuous in vivo OSKM expression has raised safety concerns due to loss of cell identity, decrease in body weight, and premature death. Although cyclic short-term or targeted expression of the reprogramming factors can mitigate some of these detrimental effects, systemic rejuvenation of wild-type mice has remained elusive.

View Article and Find Full Text PDF

Aging is the major risk factor for most human diseases and represents a major socioeconomical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process.

View Article and Find Full Text PDF
Article Synopsis
  • Aging is the main cause of many diseases and is a big challenge for society because we don't fully understand how it works.
  • A specific change in how our genes are controlled, called H3K9me3, might play a big role in aging, but we don't know exactly how yet.
  • Research using special mice showed that losing H3K9me3 leads to faster aging, less lifespan, and health problems, suggesting that fixing epigenetic changes could help slow down aging.
View Article and Find Full Text PDF

Background: The purinergic ATP-gated P2X7 receptor (P2X7R) is increasingly recognized to contribute to pathological neuroinflammation and brain hyperexcitability. P2X7R expression has been shown to be increased in the brain, including both microglia and neurons, in experimental models of epilepsy and patients. To date, the cell type-specific downstream effects of P2X7Rs during seizures remain, however, incompletely understood.

View Article and Find Full Text PDF

Unlike aged somatic cells, which exhibit a decline in molecular fidelity and eventually reach a state of replicative senescence, pluripotent stem cells can indefinitely replenish themselves while retaining full homeostatic capacity. The conferment of beneficial-pluripotency related traits via partial cellular reprogramming in vivo partial reprogramming significantly extends lifespan and restores aging phenotypes in mouse models. Although the phases of cellular reprogramming are well characterized, details of the rejuvenation processes are poorly defined.

View Article and Find Full Text PDF

Several premature aging mouse models have been developed to study aging and identify interventions that can delay age-related diseases. Yet, it is still unclear whether these models truly recapitulate natural aging. Here, we analyzed DNA methylation in multiple tissues of four previously reported mouse models of premature aging (Ercc1, LAKI, Polg, and Xpg).

View Article and Find Full Text PDF

The induction of cellular reprogramming via expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM) can drive dedifferentiation of somatic cells and ameliorate age-associated phenotypes in multiple tissues and organs. However, the benefits of long-term in vivo reprogramming are limited by detrimental side-effects. Here, using complementary genetic approaches, we demonstrated that continuous induction of the reprogramming factors in vivo leads to hepatic and intestinal dysfunction resulting in decreased body weight and contributing to premature death (within 1 week).

View Article and Find Full Text PDF

Objective: Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development.

View Article and Find Full Text PDF
Article Synopsis
  • Schizophrenia (SCZ) is influenced by genetic and environmental factors that may disrupt the regulation of gene expression, with the CPEB4 protein identified as a key player in both SCZ and autism spectrum disorder (ASD).
  • Research revealed that SCZ individuals showed reduced usage of a specific microexon in CPEB4, which correlated with lower levels of targeted genes associated with SCZ, particularly in those not taking antipsychotics.
  • Experimental findings in mice with altered CPEB4 expression support the link between aberrant splicing of CPEB4 and disrupted gene expression related to SCZ, suggesting a potential mechanism for the disorder.
View Article and Find Full Text PDF

Background And Purpose: Neonatal seizures represent a clinical emergency. However, current anti-seizure medications fail to resolve seizures in ~50% of infants. The P2X7 receptor (P2X7R) is an important driver of inflammation, and evidence suggests that P2X7R contributes to seizures and epilepsy in adults.

View Article and Find Full Text PDF
Article Synopsis
  • Huntington's disease (HD) is a hereditary neurodegenerative disorder with no current disease-modifying treatments, but researchers are investigating gene-silencing therapies and potential molecular mechanisms for drug targets.
  • An analysis of protein levels in HD patients and mouse models showed increased CPEB1 and decreased CPEB4, leading to significant changes in the transcriptome that affect neurodegeneration-associated genes.
  • Notably, a deficiency in thiamine and its active form, TPP, was observed in HD patients, and high-dose biotin and thiamine treatment in mouse models improved symptoms and could offer a new therapeutic option for HD.
View Article and Find Full Text PDF

Objective: Pharmacoresistance and the lack of disease-modifying actions of current antiseizure drugs persist as major challenges in the treatment of epilepsy. Experimental models of chemoconvulsant-induced status epilepticus remain the models of choice to discover potential antiepileptogenic drugs, but doubts remain as to the extent to which they model human pathophysiology. The aim of the present study was to compare the molecular landscape of the intra-amygdala kainic acid model of status epilepticus in mice with findings in resected brain tissue from patients with drug-resistant temporal lobe epilepsy (TLE).

View Article and Find Full Text PDF

Temporal lobe epilepsy is the most common and refractory form of epilepsy in adults. Gene expression within affected structures such as the hippocampus displays extensive dysregulation and is implicated as a central pathomechanism. Post-transcriptional mechanisms are increasingly recognized as determinants of the gene expression landscape, but key mechanisms remain unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent findings link pathogenic mutations in the DYRK1A gene, associated with Down syndrome, to specific autism spectrum conditions, affecting its enzymatic function.
  • * Research shows that mice lacking one copy of the Dyrk1a gene exhibit symptoms similar to autism, including social deficits and abnormal neuron proportions, suggesting that disruptions in neuron development may lead to these neurological issues.
View Article and Find Full Text PDF
Article Synopsis
  • Common genetic factors contribute to autism spectrum disorder (ASD) through risk gene variants that have minimal individual effects, alongside environmental influences that disrupt neurodevelopment.
  • Cytoplasmic polyadenylation element binding proteins (CPEB1-4) are crucial for regulating the translation of specific mRNAs during development, and CPEB4 is particularly linked to many high-confidence ASD risk genes.
  • In individuals with idiopathic ASD, imbalances in CPEB4 transcripts lead to shorter poly(A)-tails and reduced expression of ASD risk gene proteins, and similar disruptions in mice produce ASD-like characteristics, implicating CPEB4 as a key regulator in ASD.
View Article and Find Full Text PDF