98%
921
2 minutes
20
Aims: Continuous cropping is known to have profound effects on the soil microbial community in different planting systems. However, we lack an understanding of how different years of continuous cropping affects rhizosphere soil bacterial community co-occurrence pattern and assembly processes in the cut chrysanthemum (Chrysanthemum morifolium Ramat.) field.
Methods And Results: We collected the soils from cut chrysanthemum rhizospheres with planting for 1 year (PY1) and continuous cropping for 6 years (CY6) and 12 years (CY12). Real-time quantitative PCR and flow cytometry (FCM) techniques were used to test the 16S rRNA gene copy number and bacterial cell count, respectively. The bacterial community structure was analysed by using high-throughput sequencing technology. The CY12 had a significantly decreased soil fertility index and rhizosphere bacterial living cell counts and gene copy numbers compared to CY6 and PY1 (P < 0.05). The rhizosphere bacterial community dissimilarity increased as the continuous cropping years increased. Three main ecological clusters (modules #1, #2, and #3) were observed in the bacterial co-occurrence network across all samples, and only the relative abundance of module #1 (enriched in the CY12) was significantly correlated with soil fertility (P < 0.05). Moreover, the rhizosphere bacterial community assembly was primarily governed by the deterministic process under 12 years of continuous cropping.
Conclusions: Soil fertility decline correlates with ecological network modularization and the deterministic assembly process of the rhizosphere bacterial community of cut chrysanthemum during continuous cropping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jambio/lxad175 | DOI Listing |
Plant Physiol Biochem
September 2025
Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.
Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
College of Agronomy, Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Henan Agricultural University, Zhengzhou, China.
The magnetic field is a continuously present environmental factor. It has been found that many species, including plants, can sense and utilise it. However, the effects of the magnetic field on plants and its potential utilisation, especially in crops, have been little explored.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department Soil Science and Environmental Analyses, Institute of Soil Science and Plant Cultivation-State Research Institute, Puławy, Poland.
Introduction: Soil dissolved organic matter (DOM) regulates nutrient cycling and carbon sequestration, yet how cropping systems (rotation vs. monoculture) shape the vertical distribution and molecular traits of DOM remains unclear.
Methods: We leveraged a long-term experiment (est.
Physiol Plant
September 2025
Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada.
Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.
View Article and Find Full Text PDFSorghum is one of the critical food security crops, particularly in moisture-stressed areas of Ethiopia. However, in the absence of a well-organized formal seed system, public research institutions have continued to promote and disseminate improved sorghum varieties to encourage adoption. On the other hand, the lack of evidence on smallholder farmers' demand for improved varieties has discouraged the seed industry from investing in marginalized crops, like sorghum, in contrast to more commercialized crops such as wheat and maize.
View Article and Find Full Text PDF