98%
921
2 minutes
20
A better understanding of interindividual differences and the development of targeted therapies is one of the major challenges of modern medicine. The sex of a person plays a crucial role in this regard. This systematic review aimed to summarise and analyse available evidence on the mutual interactions between non-invasive brain stimulation and sex/polypeptide hormones. The PubMed database was searched from its inception to 31 March 2023, for (i) studies that investigated the impact of sex and/or polypeptide hormones on the effects induced by non-invasive brain stimulation, or (ii) studies that investigated non-invasive brain stimulation in the modulation of sex and/or polypeptide hormones. Eighteen studies (319 healthy and 96 disabled participants) were included. Most studies focused on female sex hormone levels during the menstrual cycle. The later follicular phase is associated with a weak between hemispheric and intracortical inhibition, strong intracortical facilitation, and high stimulation-induced neural and behavioural changes. The opposite effects are observed during the luteal phase. In addition, the participant's sex, presence and/or absence of real ovulation and increase in oestradiol level by chorionic gonadotropin injection influence the stimulation-induced neurophysiological and behavioural effects. In Parkinson's disease and consciousness disorders, the repetitive application of non-invasive brain stimulation increases oestradiol and dehydroepiandrosterone levels and reduces disability. To date, male hormones have not been sufficiently included in these studies. Here, we show that the sex and/or polypeptide hormones and non-invasive brain stimulation methods are in reciprocal interactions. This may be used to create a more effective and individualised approach for healthy individuals and individuals with disabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10377221 | PMC |
http://dx.doi.org/10.3390/biomedicines11071981 | DOI Listing |
Alzheimers Dement
September 2025
Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, China.
Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.
View Article and Find Full Text PDFNeurol Res
September 2025
Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.
View Article and Find Full Text PDFPhys Med Biol
September 2025
Zhejiang University, Zijingang Campus of Zhejiang University,Yuhangtang Road No.866,Zhejiang Province, China 310058, Hangzhou, Zhejiang, 310058, CHINA.
Transcranial ultrasound research has garnered significant attention due to its non-invasive nature, absence of ionizing radiation, and portability, making it advantageous for both imaging and therapy. A critical aspect of advancing transcranial research lies in understanding the ultrasound transmission performance of the human skull. However, inherent variations in skull shape, physical parameters, and age-related changes pose challenges for comparative studies.
View Article and Find Full Text PDFJ Neural Eng
September 2025
Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AP, NETHERLANDS.
Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.
Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.
View Article and Find Full Text PDF