Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The prevention and treatment of bioclogging is of great significance to the application of Managed Aquifer Recharge (MAR). This study investigated the alleviating effect of biosurfactant rhamnolipid (RL) on bioclogging by laboratory-scale percolation experiments. The results show that the addition of RL greatly reduced bioclogging. Compared with the group without RL, the relative hydraulic conductivity (K') of the 100 mg/L RL group increased 5 times at the end of the experiment (23 h), while the bacterial cell amount and extracellular polymeric substances (EPS) content on the sand column surface (0-2 cm) decreased by 60.8% and 85.7%, respectively. In addition, the richness and diversity of the microbial communities within the clogging matter decreased after the addition of RL. A variety of bacterial phyla were found, among which Proteobacteria were predominant in all groups. At the genus level, RL reduced the relative abundance of Acinetobacter, Bacillus, Klebsiella, and Pseudomonas. These microbes are known as strong adhesion, large size, and easy to form biofilms, therefore playing a critical role during MAR bioclogging. Moreover, RL changed the surface properties of bacteria and porous media, which results in the increase of electrostatic repulsion and decrease of hydrophobic interaction between them. Therefore, RL mediated the bacteria-porous media interaction to reduce biomass in porous media, thereby alleviating bioclogging. This study implies that RL's addition is an environmentally friendly and effective method to alleviate the bioclogging in MAR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118635DOI Listing

Publication Analysis

Top Keywords

porous media
12
managed aquifer
8
aquifer recharge
8
recharge mar
8
bacteria porous
8
bioclogging
7
rhamnolipid-induced alleviation
4
alleviation bioclogging
4
bioclogging managed
4
mar
4

Similar Publications

Porous Environmental Polarity as a Critical Descriptor for Efficient Proton Conductivity in Metal-Organic Frameworks.

Langmuir

September 2025

Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

Recent years have witnessed growing research interest in proton-conducting metal-organic frameworks (MOFs) owing to the characteristics of highly ordered pores, oriented packing of crystals, and particularly designable structures. However, how to construct a suitable microenvironment in MOF pores to form optimal proton transport pathways remains challenging. In this study, four MOFs with similar porous diameters but different microenvironments have been screened to study how porous environments influence proton conduction for the first time.

View Article and Find Full Text PDF

Vertical cutoff wall is widely used as one of the in-situ remediation technologies for contaminated sites. In this paper, considering the unsaturated characteristics of porous media, a three-dimensional pollutant transport model of inner aquifer-vertical cutoff wall-outer aquifer is established. The main conclusions are as follows.

View Article and Find Full Text PDF

Electrosensitive hydrogels are smart biomaterials that swell, shrink, deform, and bend when an external electric field is applied. These hydrogels have enormous potential for the controlled therapeutic delivery of biochemical substances to the affected area, thus promoting tissue regeneration. Computational modeling and simulation approaches have provided researchers with cost-effective predictive models that can be used to optimize and experimental protocols.

View Article and Find Full Text PDF

Streamlined Sample Cleanup: Small Molecule Fractionation and Extraction Via Low-Volume Polymer Monolithic Columns for In-Line Analysis.

J Chromatogr Sci

August 2025

Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55 2333CC Leiden, The Netherlands.

Polymer monoliths are stationary-phase materials for liquid chromatography and solid-phase extraction. Their porous structure, tuneability and simple synthesis enable tailoring to specific analysis requirements in analytical chemistry. Typically, polymer monoliths are used to separate larger biomolecules.

View Article and Find Full Text PDF

Ionic Transport Aspects of Water Electrolysis in Alkaline Media.

Research (Wash D C)

August 2025

Materials Science, Energy and Nanoengineering (MSN) Department, University Mohammed VI Polytechnic, Ben Guerir, Morocco.

Water electrolysis is a key industrial process for producing green hydrogen. To avoid the use of noble metals and fluorinated polymer membranes, liquid water electrolysis is often carried out in alkaline conditions. It is common to distinguish between 3 processes: alkaline electrolysis at high electrolyte concentrations (≥7 M) with porous membranes, alkaline electrolysis at high electrolyte concentrations (≥7 M) with ion-solvating membranes, and alkaline electrolysis at moderate electrolyte concentrations (<2 M) with anion-exchange membranes.

View Article and Find Full Text PDF