A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Review on modeling theories of electrosensitive hydrogels for cartilage tissue engineering. | LitMetric

Review on modeling theories of electrosensitive hydrogels for cartilage tissue engineering.

Front Bioeng Biotechnol

Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrosensitive hydrogels are smart biomaterials that swell, shrink, deform, and bend when an external electric field is applied. These hydrogels have enormous potential for the controlled therapeutic delivery of biochemical substances to the affected area, thus promoting tissue regeneration. Computational modeling and simulation approaches have provided researchers with cost-effective predictive models that can be used to optimize and experimental protocols. In this article, we present a review of the modeling theories that can be used for the modeling and numerical simulation of electrosensitive hydrogels immersed in a solution with an applied electric field for cartilage tissue engineering. Each theory presents tradeoffs for the numerical modeling of cartilage repair implants. The selection of an appropriate theory depends on the required accuracy, time-dependent application, and deformation behavior. Although most simulations are limited to one-dimensional cases, multidimensional simulations are crucial. By reviewing the modeling theories of electrosensitive hydrogels, this article aims to inspire researchers to model the electrical stimulation of electrosensitive hydrogels for various applications, including cartilage tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399989PMC
http://dx.doi.org/10.3389/fbioe.2025.1631725DOI Listing

Publication Analysis

Top Keywords

electrosensitive hydrogels
20
modeling theories
12
cartilage tissue
12
tissue engineering
12
review modeling
8
theories electrosensitive
8
electric field
8
hydrogels
6
electrosensitive
5
modeling
5

Similar Publications