98%
921
2 minutes
20
Neural interfaces play a major role in modulating neural signals for therapeutic purposes. To meet the demand of conformable neural interfaces for developing bioelectronic medicine, recent studies have focused on the performance of electrical neurostimulators employing soft conductors such as conducting polymers and electronic or ionic conductive hydrogels. However, faradaic charge injection at the interface of the electrode and nerve tissue causes irreversible gas evolution, oxidation of electrodes, and reduction of biological ions, thus causing undesired tissue damage and electrode degradation. Here we report a conformable neural interface engineering based on multicross-linked membrane-ionogel assembly (termed McMiA), which enables nonfaradaic neurostimulation without irreversible charge transfer reaction. The McMiA consists of a genipin-cross-linked biopolymeric ionogel coupled with a dopamine-cross-linked graphene oxide membrane to prevent ion exchange between biological and synthetic McMiA ions and to function as a bioadhesive forming covalent bonds with the target tissues. In addition, the demonstration of bioelectronic medicine via the McMiA-based neurostimulation of sciatic nerves shows the enhanced clinical utility in treating the overactive bladder syndrome. As the McMiA-based neural interface is soft, robust for bioadhesion, and stable in a physiological environment, it can offer significant advancement in biocompatibility and long-term operability for neural interface engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c02637 | DOI Listing |
ACS Appl Bio Mater
September 2025
Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-34311, Iran.
The development of high-performance neural interfaces is critical for advancing brain-machine communication and treating neurological disorders. A major challenge in neural electrode design is achieving a seamless biological-electronic interface with optimized electrochemical properties, mechanical stability, and biocompatibility. In this study, we introduce a hierarchical micronanostructured poly(3,4-ethylenedioxythiophene)-polydopamine (PEDOT-PDA) coating on titanium nitride (TiN) microelectrodes engineered to enhance electrophysiological signal recording and neural integration.
View Article and Find Full Text PDFAnat Sci Educ
September 2025
Human Anatomy, Vita-Salute San Raffaele University, Milan, Italy.
As emerging technologies reshape both the body and how we represent it, anatomical education stands at a threshold. Virtual dissection tools, AI-generated images, and immersive platforms are redefining how students learn anatomy, while real-world bodies are becoming hybridized through implants, neural interfaces, and bioengineered components. This Viewpoint explores what it means to teach human anatomy when the body is no longer entirely natural, and the image is no longer entirely real.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Electronic Information & Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China.
The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.
View Article and Find Full Text PDFSmall Methods
September 2025
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
Scalp electroencephalography (EEG) serves as a pivotal technology for the noninvasive monitoring of brain functional activity, diagnosing neurological disorders, and assessing cognitive states. However, inherent compatibility barriers between traditional rigid electrodes and the hairy scalp interface significantly compromise signal quality, long-term monitoring comfort, and user compliance. This review examines conductive hydrogel electrodes' pivotal role in advancing scalp EEG, particularly their unique capacity to overcome hair-interface barriers.
View Article and Find Full Text PDF