98%
921
2 minutes
20
Neuropathic pain has a complex pathogenesis. Here, we examined the role of caveolin-1 (Cav-1) in the anterior cingulate cortex (ACC) in a chronic constriction injury (CCI) mouse model for the enhancement of presynaptic glutamate release in chronic neuropathic pain. Cav-1 was localized in glutamatergic neurons and showed higher expression in the ACC of CCI versus sham mice. Moreover, the release of glutamate from the ACC of the CCI mice was greater than that of the sham mice. Inhibition of Cav-1 by siRNAs greatly reduced the release of glutamate of ACC, while its overexpression (induced by injecting Lenti-Cav-1) reversed this process. The chemogenetics method was then used to activate or inhibit glutamatergic neurons in the ACC area. After 21 days of injection of AAV-hM3Dq in the sham mice, the release of glutamate was increased, the paw withdrawal latency was shortened, and expression of Cav-1 in the ACC was upregulated after intraperitoneal injection of 2 mg/kg clozapine N-oxide. Injection of AAV-hM4Di in the ACC of CCI mice led to the opposite effects. Furthermore, decreasing Cav-1 in the ACC in sham mice injected with rAAV-hM3DGq did not increase glutamate release. These findings suggest that Cav-1 in the ACC is essential for enhancing glutamate release in neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jnen/nlad056 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Chemical and Biomolecular Engineering Dept, University of California, Los Angeles, Los Angeles, California 90095, United States.
Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.
Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Anhui Provincial Key Laboratory of Meridian Viscera Correlationship, Anhui University of Chinese Medicine, Hefei 230012, China.
Objectives: To clarify the role of hippocampal glutamate system in regulating HPA axis in mediating the effect of electroacupuncture (EA) at the heart meridian for improving myocardial injury in rats with acute myocardial ischemia (AMI).
Methods: Male SD rats were randomized into sham-operated group, AMI group, EA group, and L-glutamic acid+EA group (=9). Rat models of AMI were established by left descending coronary artery ligation, and EA was applied at the "Shenmen-Tongli" segment; the rats in L-glutamic acid+EA group were subjected to microinjection of L-glutamic acid into the bilateral hippocampus prior to AMI modeling and EA treatment.
Behav Brain Res
September 2025
Department of Pharmacology of the School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil. Electronic address:
Aims: Acute restraint stress (RS) has been reported to activate the supraoptic nucleus of the hypothalamus (SON). The aim of the present study was to evaluate the role of glutamatergic neurotransmission in the SON on autonomic [mean arterial pressure (MAP), heart rate (HR), and tail cutaneous temperature], neuroendocrine (plasma levels of corticosterone, oxytocin, and vasopressin), and behavioral responses to RS.
Methods: Male Wistar rats with bilateral SON cannulas received microinjections of NMDA or non-NMDA receptor antagonists or vehicle before restraint stress, and the effects on cardiovascular, tail temperature, hormonal, and behavioral responses were evaluated RESULTS: Microinjection of DL-AP7 or NBQX into the SON reduced MAP increases and tail temperature decreases induced by RS.