98%
921
2 minutes
20
Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclo ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481675 | PMC |
http://dx.doi.org/10.15252/embr.202256702 | DOI Listing |
PLoS Biol
September 2025
Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America.
Morphogens cooperate to guide development of the inner ear cochlea, but how do compartments communicate? A recent study in PLOS Biology reveals how planar cell polarity of individual cells is integrated across distinct regional compartments to ensure proper organ morphogenesis.
View Article and Find Full Text PDFMedComm (2020)
September 2025
modulates presynaptic Ca1.3 Ca channel function in inner hair cells (IHCs) and is required for indefatigable synaptic sound encoding. Biallelic variants in are associated with non-syndromic hearing loss (DFNB93).
View Article and Find Full Text PDFHum Genet
September 2025
College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.
Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
September 2025
Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON, M4N 3M5, Canada.
Purpose: Delivery of therapeutics to the inner ear is complicated by their inaccessible location and the presence of the blood-labyrinth barrier that restricts most blood-borne compounds from entering the inner ear. This study addresses the challenge of optimal delivery in treating inner ear disease, focusing on magnetic targeting gene therapy using adeno-associated virus (AAV).
Methods: The investigation explores three AAV serotypes (AAV2 Quad Mut, AAV2 pANC80L65, and AAV9 PHP.
J Assoc Res Otolaryngol
September 2025
Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
Purpose: The mammalian cochlea has two types of low abundance and highly specialized inner (IHC) and outer (OHC) mechanosensory hair cells. Their malfunction or death is a common cause of congenital and acquired deafness. IHCs and OHCs exhibit different transcriptomes during development.
View Article and Find Full Text PDF