98%
921
2 minutes
20
Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349097 | PMC |
http://dx.doi.org/10.1038/s41467-023-39931-2 | DOI Listing |
Sci Total Environ
September 2025
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea; Microblance Inc., Daegu 41566, Republic of Korea. Electronic address:
Abandoned mines have created extensive idle areas contaminated with heavy metals (HMs). Conventional remediation methods are often costly, environmentally disruptive, and pose risks to human health. As a sustainable alternative, a biological approach utilizing metal-tolerant plant growth-promoting bacteria (mPGPBs) was employed to remediate HM-contaminated soils and assess their biological safety.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
Parkinson's disease (PD) is characterized by the selective degeneration of midbrain dopaminergic neurons and aggregation of α-synuclein. Emerging evidence implicates the gut microbiome in PD, with microbial metabolites proposed as potential pathological mediators. However, the specific microbes and metabolites involved, and whether gut-derived metabolites can reach the brain to directly induce neurodegeneration, remain unclear.
View Article and Find Full Text PDFGut Microbes
December 2025
Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
Gut microbiota dysbiosis is strongly linked to colorectal cancer (CRC), but reliable early diagnostic markers remain elusive. This study investigates the role of a novel strain in CRC pathogenesis. Metabolomic analysis of CRC patient feces identified elevated agmatine levels.
View Article and Find Full Text PDFNeuromolecular Med
September 2025
Gilgamesh Ahliya University, Baghdad, Iraq.
Autoimmune diseases occur when the immune system mistakenly attacks the body's own tissues, affecting millions of people and often requiring long-term treatment. Current therapies, such as immunosuppressants and biologics, help manage symptoms but can cause serious side effects. A promising new approach involves engineered microbiota-a method that modifies gut bacteria to influence immune function and potentially ease autoimmune conditions.
View Article and Find Full Text PDFGut Microbes
December 2025
Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada.
Host - microbiome interactions are central to Crohn'sdisease (CD) pathogenesis; yet the early metabolic alterations that precededisease onset remain poorly defined. To explore preclinical metabolicsignatures of CD, we analyzed baseline serum metabolomic profiles in a nestedcase-control study within the Crohn's and Colitis Canada - Genetics, Environment, Microbiome (CCC-GEM) Project, a prospective cohort of 5,122 healthyfirst-degree relatives (FDRs) of CD patients. We included 78 individuals wholater developed CD and 311 matched FDRs who remained disease-free.
View Article and Find Full Text PDF