Characterization of a New Silk Sericin-Based Hydrogel for Water Retention in Soil.

Polymers (Basel)

Grupo de Investigación en Gestión de la Tecnología y la Innovación (GTI), Universidad Pontificia Bolivariana, Medellín 050031, Colombia.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrogel-type absorbent materials are currently a technological alternative for improving water retention in the soil and reducing nutrient loss by leaching and evaporation. This study aimed to evaluate the application of a new hydrogel based on silk sericin (SS) as a water retention material in soil. The morphology of the hydrogel was characterized using Scanning Electron Microscopy (SEM), and its impact on moisture retention in sandy loam soil (SLS) under different levels of matric pressure (MP) was evaluated. Additionally, water content data were collected over time for both SLS and SLS with hydrogel (SLS + H), and the data were used to fit predictive models. The results indicate that the hydrogel had a porous morphology that promoted water retention and soil release. Under a MP of 0.3 bar, the use of the hydrogel increased water retention by 44.70% with respect to that of SLS. The predictive models developed were adequately adjusted to the behavior of the moisture data over time and evidenced the incidence of the absorbent material on the dynamics of the moisture content in the soil. Therefore, these models could be useful for facilitating subsequent simulations or for designing automatic soil moisture control systems oriented to smart farming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10346952PMC
http://dx.doi.org/10.3390/polym15132763DOI Listing

Publication Analysis

Top Keywords

water retention
20
retention soil
12
predictive models
8
soil
7
hydrogel
6
water
6
retention
6
sls
5
characterization silk
4
silk sericin-based
4

Similar Publications

The unregulated use and improper disposal of active pharmaceutical ingredients (APIs), particularly phenylbutazone (PBZ), are contaminating water resources and posing serious risks to the food chain. PBZ is a nonsteroidal anti-inflammatory drug (NSAID) commonly used for treating pain and fever in animals, and its persistence in the environment due to inadequate waste management has become a cause of concern. To address this, we report the fabrication of benzimidazole-based self-assembled nanomicelles (R2 NMs) for selective detection and removal of PBZ.

View Article and Find Full Text PDF

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

Delta under pressure: A holistic assessment of morphodynamic change in the Indian Sundarbans from 1972 to 2025.

Mar Pollut Bull

September 2025

CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

The Indian Sundarban Delta (ISD), located at the confluence of the Ganga-Brahmaputra-Meghna river system along India's eastern coast, is among the world's most geomorphologically dynamic and environmentally vulnerable deltaic systems. Over the past five decades, the region has undergone substantial morphodynamic changes driven by natural forces such as relative sea-level rise, wave action, and sediment flux, as well as anthropogenic factors like upstream water regulation via dams and barrages. This study examines the long-term evolution of shoreline and island morphology across the ISD from 1972 to 2025 using multi-temporal Landsat datasets under consistent tidal conditions.

View Article and Find Full Text PDF

Hemostatic intervention at the bleeding site during early-phase wound management plays a crucial role in reducing trauma-induced complications and mortality, while advanced wound dressings facilitate hemorrhage control, exudate management, and antimicrobial protection to promote optimal healing outcomes. To address these issues, we developed a multifunctional collagen/silk fibroin/Mg(OH)₂ (Col/SF/Mg(OH)₂) composite sponge combining enhanced mechanical strength, rapid hemostasis, and broad-spectrum antibacterial activity. The incorporation of silk fibroin (SF) through covalent crosslinking increased the elastic modulus by 4.

View Article and Find Full Text PDF

The rational design of electrode materials with outstanding energy and power density for supercapacitors (SCc) and high-performance electrocatalysts in alkaline media plays an indispensable role in the application of energy storage and overall water splitting. In this paper, we prepared NiCoFe layered ternary hydroxides (LTH) using a hydrothermal synthesis method. The sample with a Ni/Co/Fe ratio of 1:2:0.

View Article and Find Full Text PDF