98%
921
2 minutes
20
Background: Within the premature infant intestine, oxygenation and motility play key physiological roles in healthy development and disease such as necrotizing enterocolitis. To date, there are limited techniques to reliably assess these physiological functions that are also clinically feasible for critically ill infants. To address this clinical need, we hypothesized that photoacoustic imaging (PAI) can provide non-invasive assessment of intestinal tissue oxygenation and motility to characterize intestinal physiology and health.
Methods: Ultrasound and photoacoustic images were acquired in 2-day and 4-day old neonatal rats. For PAI assessment of intestinal tissue oxygenation, an inspired gas challenge was performed using hypoxic, normoxic, and hyperoxic inspired oxygen (FiO2). For intestinal motility, oral administration of ICG contrast agent was used to compare control animals to an experimental model of loperamide-induced intestinal motility inhibition.
Results: PAI demonstrated progressive increases in oxygen saturation (sO2) as FiO2 increased, while the pattern of oxygen localization remained relatively consistent in both 2-day and 4-day old neonatal rats. Analysis of intraluminal ICG contrast enhanced PAI images yielded a map of the motility index in control and loperamide treated rats. From PAI analysis, loperamide significantly inhibited intestinal motility, with a 32.6% decrease in intestinal motility index scores in 4-day old rats.
Conclusion: These data establish the feasibility and application of PAI to non-invasively and quantitatively measure intestinal tissue oxygenation and motility. This proof-of-concept study is an important first step in developing and optimizing photoacoustic imaging to provide valuable insight into intestinal health and disease to improve the care of premature infants.
Highlights: Intestinal tissue oxygenation and intestinal motility are important biomarkers of intestinal physiology in health and disease of premature infants.This proof-of-concept preclinical rat study is the first to report application of photoacoustic imaging for the neonatal intestine.Photoacoustic imaging is demonstrated as a promising non-invasive diagnostic imaging method for quantifying intestinal tissue oxygenation and intestinal motility in premature infants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326976 | PMC |
http://dx.doi.org/10.1101/2023.06.27.545971 | DOI Listing |
J Adv Res
September 2025
National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825
Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.
Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.
Cell
September 2025
Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address:
Adaptation of intestinal helminths to vertebrates involved the evolution of strategies to attenuate host tissue damage to support parasite reproduction and dissemination of offspring to the environment. Helminths initiate the IL-25-mediated tuft cell-type 2 innate lymphoid cell (ILC2) circuit that enhances barrier protection of the host, although viable parasites can target and limit this pathway. We used IL-25 alone to create small intestinal adaptation, marked by anatomic and immunologic changes that persisted months after induction.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China. Electronic address:
Butyrate is a short-chain fatty acid produced by intestinal bacteria during the fermentation of dietary fibers and has shown potential in modulating inflammatory responses. Herein, we investigated how sodium butyrate exerts dual, dose-dependent regulation of innate immunity using the zebrafish model of lipopolysaccharide (LPS)-induced inflammation. Our results demonstrated that at low concentrations (3 mM), sodium butyrate suppressed LPS-driven pro-inflammatory mediators (il1β, cebpβ, irg1l) while restoring anti-inflammatory and tissue-repair genes (lyz, il8, elf3).
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea.
Background: Endometrial damage is a critical factor contributing to infertility, particularly in women with refractory thin endometrium or intrauterine adhesions. Therefore, developing innovative therapeutic strategies for endometrial regeneration is essential. This study evaluates the regenerative potential of endometrial stromal cell (EMSC) injection and EMSC-loaded patch application in a mouse model with ethanol-induced endometrial damage.
View Article and Find Full Text PDFJ Mol Histol
September 2025
Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt.
Cadmium (Cad) is a worldwide heavy metal pollutant associated with global health challenges. Alteration of the intestinal microbiome, due to chemicals' exposure, plays a vital role in the pathogenesis of gastrointestinal diseases such as pancreatic disorders. Hence, modulation of the gut microbiota might be a targeted approach to manage pancreatic diseases.
View Article and Find Full Text PDF