98%
921
2 minutes
20
In the present study, the waste carbon cartridge of the water filter was modified and reutilized for defluoridation of water. The modified carbon was characterized by particle size analysis (PSA), Fourier transformed infrared spectroscopy (FTIR), zeta potential, pH, energy-dispersive X-ray (EDS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray crystallography (XRD). The adsorptive nature of modified carbon was investigated with pH (4-10), dose (1-5 g/L), contact time (0-180 min), temperature (25-55 °C), fluoride concentration (5-20 mg/L), and the effect of the competitive ions. Adsorption isotherm, kinetics, thermodynamics, and breakthrough studies were evaluated for fluoride uptake on surface-modified carbon (SM*C). Fluoride adsorption on the carbon accepted Langmuir model (R = 0.983) and pseudo-second-order kinetic (R = 0.956). The presence of HCO in the solution reduced the elimination of fluoride. The carbon was regenerated and reused four times; the removal percentage was decreased from 92 to 31.7%. This adsorption phenomenon showed exothermic behavior. The maximum fluoride uptake capacity of SM*C achieved 2.97 mg/g at 20 mg/L of initial concentration. The modified carbon cartridge of the water filter was successfully employed for fluoride removal from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-28573-y | DOI Listing |
Environ Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China. Electronic address:
Tumor surgery often leads to tumor residue, tissue defects, and drug-resistant bacterial infections, resulting in high recurrence rates and chronic wounds. In this study, an injectable hydrogel was synthesized using glycidyl trimethyl ammonium chloride-chitosan (GCh) and formylbenzoic acid-modified chrysomycin A (CA)-loaded F127 micelles (F127FA-CA). The formation of the hydrogel is achieved through Schiff base conjugation, which occurs between the amino groups present in GCh and the aldehyde groups located on the micelle surfaces.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Duke University, Thomas Lord Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27708, USA.
Chiral phonons, which are characterized by rotational atomic motion, offer a unique mechanism for transferring angular momentum from phonons to electron spins and other angular momentum carriers. In this Letter, we present a theoretical investigation into the emergence of chiral phonons in a chiral hybrid organic-inorganic perovskite (HOIP) and their critical roles in rigid-body rotation, magnetic moment generation, and spin transport under nonthermal equilibrium conditions. We demonstrate that phonon angular momentum can modify the spin chemical potential via a proposed microscopic Barnett effect, leading to a spatially varying spin chemical potential at the metal/HOIP interface, which subsequently induces spin currents in an adjacent Cu layer, with a magnitude consistent with experimental observations.
View Article and Find Full Text PDFInorg Chem
September 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.
View Article and Find Full Text PDF