Extreme precipitation patterns in the Asia-Pacific region and its correlation with El Niño-Southern Oscillation (ENSO).

Sci Rep

Aerosol and Climate Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering (LTH), Lund University, Lund, Sweden.

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the Asia-Pacific region (APR), extreme precipitation is one of the most critical climate stressors, affecting 60% of the population and adding pressure to governance, economic, environmental, and public health challenges. In this study, we analyzed extreme precipitation spatiotemporal trends in APR using 11 different indices and revealed the dominant factors governing precipitation amount by attributing its variability to precipitation frequency and intensity. We further investigated how these extreme precipitation indices are influenced by El Niño-Southern Oscillation (ENSO) at a seasonal scale. The analysis covered 465 ERA5 (the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts) study locations over eight countries and regions during 1990-2019. Results revealed a general decrease indicated by the extreme precipitation indices (e.g., the annual total amount of wet-day precipitation, average intensity of wet-day precipitation), particularly in central-eastern China, Bangladesh, eastern India, Peninsular Malaysia and Indonesia. We observed that the seasonal variability of the amount of wet-day precipitation in most locations in China and India are dominated by precipitation intensity in June-August (JJA), and by precipitation frequency in December-February (DJF). Locations in Malaysia and Indonesia are mostly dominated by precipitation intensity in March-May (MAM) and DJF. During ENSO positive phase, significant negative anomalies in seasonal precipitation indices (amount of wet-day precipitation, number of wet days and intensity of wet-day precipitation) were observed in Indonesia, while opposite results were observed for ENSO negative phase. These findings revealing patterns and drivers for extreme precipitation in APR may inform climate change adaptation and disaster risk reduction strategies in the study region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10329631PMC
http://dx.doi.org/10.1038/s41598-023-38317-0DOI Listing

Publication Analysis

Top Keywords

extreme precipitation
24
wet-day precipitation
20
precipitation
16
precipitation indices
12
amount wet-day
12
asia-pacific region
8
niño-southern oscillation
8
oscillation enso
8
precipitation frequency
8
intensity wet-day
8

Similar Publications

Wetlands and their aquatic arthropods are threatened by climate change (temperature, precipitation). In this review, we first synthesize the literature on environmental controls on wetland arthropods (hydroperiod, temperature, dissolved oxygen) and then assess how these controls operate across freshwater wetlands from different global biomes (tropical/subtropical, temperate, high latitude/altitude, and dry climates) and how changes in climates alter arthropod fauna with consequent modifications to wetland ecosystem functions (decomposition, food web dynamics). We also describe ways to develop bioassessment of climate change impacts on wetlands.

View Article and Find Full Text PDF

Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial.

View Article and Find Full Text PDF

Simultaneous determination of Sr and Pu isotopes in marine biological samples.

Anal Chim Acta

November 2025

State Key Laboratory of Loess Science, Shaanxi Key Laboratory of AMS Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China. Electronic address:

Pu and Sr are highly important radionuclides in the environment, which can accumulate in the human body through the food chain and cause radiation exposure. With the continuous discharge of treated nuclear contamination water from the Fukushima Daiichi nuclear power plant, it is crucial to investigate and monitor the levels of Pu and Sr in seafood. However, it is still a challenge to determine Pu and Sr in seafood at environmental levels, owing to their extremely low concentrations, labor-intensive and time-consuming pre-treatment for large-sized samples.

View Article and Find Full Text PDF

Lagrangian quantification of atmospheric moisture sources for extreme rainfall events over India during the 2023 summer monsoon.

Sci Total Environ

September 2025

Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:

Extreme rainfall during the Indian Summer Monsoon (ISM) accounts for approximately 27 % of the total seasonal rainfall. Most of this moisture is transported from the Indian Ocean. Amid ongoing warming of the Indian Ocean, 2023 stood out as one of the warmest monsoon years on record.

View Article and Find Full Text PDF

Characterization of biogeochemical cycles in agricultural watersheds: Integrating regional modelling assessment with downstream water quality.

J Environ Manage

September 2025

Ecological Modelling Laboratory, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada. Electronic address:

Agriculture intensification represents an essential strategy to ensure food security for the growing human population, but it also poses considerable environmental concerns. Climate change and associated projections of an increased frequency of extreme precipitation and runoff events may amplify nutrient dynamics along the watershed-lake continuum, and could further exacerbate the poor water quality conditions downstream. Identifying hotspot locations with higher propensity for sediment and nutrient export and designing effective mitigation measures at the source is more critical than ever.

View Article and Find Full Text PDF