98%
921
2 minutes
20
Glyphosate is the most widely used herbicide in global agricultural cultivation. However, little is known about the environmental risks associated with its migration and transformation. We conducted light irradiation experiments to study the dynamics and mechanism of photodegradation of glyphosate in ditches, ponds and lakes, and evaluated the effect of glyphosate photodegradation on algae growth through algae culture experiments. Our results showed that glyphosate in ditches, ponds and lakes could undergo photochemical degradation under sunlight irradiation with the production of phosphate, and the photodegradation rate of glyphosate in ditches could reach 86% after 96 h under sunlight irradiation. Hydroxyl radicals (•OH) was the main reactive oxygen species (ROS) for glyphosate photodegradation, and its steady-state concentrations in ditches, ponds and lakes were 6.22 × 10, 4.73 × 10, and 4.90 × 10 M. The fluorescence emission-excitation matrix (EEM) and other technologies further indicated that the humus components in dissolved organic matter (DOM) and nitrite were the main photosensitive substances producing •OH. In addition, the phosphate generated by glyphosate photodegradation could greatly promote the growth of Microcystis aeruginosa, thereby increasing the risk of eutrophication. Thus, glyphosate should be scientifically and reasonably applied to avoid environmental risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.115211 | DOI Listing |
Sci Total Environ
December 2024
Swedish University of Agricultural Sciences, Department of Molecular Sciences, Box 7015, 750 07 Uppsala, Sweden. Electronic address:
Spray drift of glyphosate has the potential to affect non-target vegetation and surface waters close to the application area. To assess the likelihood of such impact along Swedish railways, four field experiments were conducted at three railway sites during 2019 and 2020. An herbicide spraying train applied herbicide Roundup Ultra (glyphosate) at speeds of 33 to 48 km/h.
View Article and Find Full Text PDFEnviron Res
November 2024
School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:
Glyphosate, a commonly used organophosphorus herbicide in rice-crayfish cropping regions, may alter regional phosphorus cycle processes while affecting the structure of microbial communities. However, the effects of glyphosate residues on rice-crayfish systems remain unclear. In this study, we assessed the spatial and temporal distribution characteristics of glyphosate and its primary degradation products, as well as the impact mechanisms of glyphosate on microbial communities and the phosphorus cycle in rice-crayfish systems such as paddy fields, breeding ditches and recharge rivers.
View Article and Find Full Text PDFWater Res
May 2024
Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain.
Freshwater ecosystems face a particularly high risk of biodiversity loss compared to marine and terrestrial systems. The use of pesticides in agricultural fields is recognized as a relevant stressor for freshwater environments, exerting a negative impact worldwide on the overall status and health of the freshwater communities. In the present work, part of the Horizon 2020 funded SPRINT project, the occurrence of 193 pesticide residues was investigated in 64 small water bodies of distinct typology (creeks, streams, channels, ditches, rivers, lakes, ponds and reservoirs), located in regions with high agricultural activity in 10 European countries and in Argentina.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2023
State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Qinzhou Key Laboratory for Eco-Restoration of Environment, Beibu Gulf University, Qinzhou, Guangxi 535011, China. Electroni
Glyphosate is the most widely used herbicide in global agricultural cultivation. However, little is known about the environmental risks associated with its migration and transformation. We conducted light irradiation experiments to study the dynamics and mechanism of photodegradation of glyphosate in ditches, ponds and lakes, and evaluated the effect of glyphosate photodegradation on algae growth through algae culture experiments.
View Article and Find Full Text PDFArch Environ Contam Toxicol
July 2021
Department of Biology, University of Ottawa, Ottawa, ON, Canada.
Agricultural drainage ditches help remove excess water from fields and provide habitat for wildlife. Drainage ditch management, which includes various forms of vegetation clearing and sediment dredging, can variably affect the ecological function of these systems. To determine whether ditch conditions following dredging/vegetation clearing management affected the survival, growth, and development of embryos and tadpoles of northern leopard frogs (Lithobates pipiens), we conducted three field studies using in situ cages over 2 years.
View Article and Find Full Text PDF