A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

How do glyphosate and AMPA alter the microbial community structure and phosphorus cycle in rice-crayfish systems? | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glyphosate, a commonly used organophosphorus herbicide in rice-crayfish cropping regions, may alter regional phosphorus cycle processes while affecting the structure of microbial communities. However, the effects of glyphosate residues on rice-crayfish systems remain unclear. In this study, we assessed the spatial and temporal distribution characteristics of glyphosate and its primary degradation products, as well as the impact mechanisms of glyphosate on microbial communities and the phosphorus cycle in rice-crayfish systems such as paddy fields, breeding ditches and recharge rivers. The detection rates of glyphosate and aminomethylphosphonic acid (AMPA) were 100% in rice-crayfish systems. Concentrations of glyphosate in the water phase and soil/sediment were as high as 0.012 μg/L and 7.480 μg/kg, respectively, and concentrations of AMPA were as high as 17.435 μg/L and 13.200 μg/kg, respectively. Glyphosate concentrations were not affected by rainfall or sampling site, but concentrations of AMPA in the water phase of recharge rivers were affected by rainfall. The glyphosate concentration was significantly and positively correlated with RBG-16-58-14 abundance, and the AMPA concentration was significantly and positively correlated with Actinobacteria and Lysobacter abundance, and negatively correlated with Cyanobacteria abundance (P < 0.05). The highest abundances of phoD, phnK, and ppx genes were found in all soils/sediments. Glyphosate concentration in soil/sediment was significantly and positively correlated with the abundance of phoD gene encoding an organophosphorus-degrading enzyme and ppx gene encoding poly inorganic phosphate (Pi) hydrolase (P < 0.05). In addition, the glyphosate concentration was significantly and positively correlated with the Ca-bonded Pi content (P < 0.05). This implies that glyphosate may promote the production of stable Pi in rice-crayfish systems by increasing the abundance of phoD and ppx genes. The results of this study reveal the impact mechanism of glyphosate on the phosphorus cycle in rice-crayfish systems and provide a basis for the risk assessment of glyphosate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119679DOI Listing

Publication Analysis

Top Keywords

phosphorus cycle
12
rice-crayfish systems
12
glyphosate
9
cycle rice-crayfish
8
microbial communities
8
recharge rivers
8
water phase
8
concentrations ampa
8
concentration positively
8
positively correlated
8

Similar Publications