Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The inhibitory neurotransmitter γ-aminobutyric acid (GABA) is cleared from the synaptic cleft by the sodium- and chloride-coupled GABA transporter GAT1. Inhibition of GAT1 prolongs the GABAergic signaling at the synapse and is a strategy to treat certain forms of epilepsy. In this study, we present the cryo-electron microscopy structure of Rattus norvegicus GABA transporter 1 (rGAT1) at a resolution of 3.1 Å. The structure elucidation was facilitated by epitope transfer of a fragment-antigen binding (Fab) interaction site from the Drosophila dopamine transporter (dDAT) to rGAT1. The structure reveals rGAT1 in a cytosol-facing conformation, with a linear density in the primary binding site that accommodates a molecule of GABA, a displaced ion density proximal to Na site 1 and a bound chloride ion. A unique insertion in TM10 aids the formation of a compact, closed extracellular gate. Besides yielding mechanistic insights into ion and substrate recognition, our study will enable the rational design of specific antiepileptics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352132PMC
http://dx.doi.org/10.1038/s41594-023-01011-wDOI Listing

Publication Analysis

Top Keywords

gaba transporter
12
substrate recognition
8
gaba
5
cryo-em structure
4
structure gaba
4
transporter
4
transporter reveals
4
reveals substrate
4
recognition transport
4
transport mechanism
4

Similar Publications

Levofloxacin-induced seizure susceptibility involves both enhanced glutamatergic and impaired GABAergic synaptic function.

Brain Res

September 2025

Department of Geriatric Rehabilitation, Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Guangxi, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. Electronic address: 13657813091@163

Levofloxacin (LVFX)-associated seizures are thought to arise from disrupted excitatory-inhibitory balance, but the underlying synaptic mechanisms remain unclear. This study investigated how LVFX alters both glutamatergic and GABAergic transmission to promote neuronal hyperexcitability. We combined in vitro and in vivo approaches using primary cortical neurons treated with LVFX and adult rats administered LVFX.

View Article and Find Full Text PDF

Substrate and inhibitor binding of human GABA transporter 3.

Structure

August 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

GABA (g-aminobutyric acid) transporter 3 (GAT3) is primarily found in glial cells and is essential for regulating GABA homeostasis in the central nervous system by mediating GABA uptake. Consequently, GAT3 has emerged as a significant therapeutic target for the treatment of epilepsy. In this study, we present the cryoelectron microscopy (cryo-EM) structures of GAT3 bound to its substrate GABA, the selective inhibitor SNAP-5114, and in the substrate-free state.

View Article and Find Full Text PDF

Synergistic stress-relieving and cognitive-enhancing effects of walnut peptide and theanine in human brain organoid and mouse stress models.

Phytomedicine

August 2025

Laboratory of Neurological Disease Modeling and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Background: Stress is a prevalent mental health concern that often emerges in late adolescence or early adulthood. Since 2007, the Food and Drug Administration (FDA) has not approved any novel anxiolytic pharmaceuticals, leading to increased interest in nutritional supplements as alternative therapies for stress management.

Purpose: Building on our previous study, this work aims to investigate the synergistic effects of Theanine (Th) and Walnut Peptide (WP) on stress mitigation and cognitive enhancement.

View Article and Find Full Text PDF

The main inhibitory neurotransmitter in the central nervous system is γ-aminobutyric acid (GABA). GABA transporter type 1 (GAT-1) is the principal GABA transporter in the brain, and it plays a crucial role in modulating GABA signaling. Its potential role in several neuropsychiatric disorders makes it an important target to study.

View Article and Find Full Text PDF

Introduction: The potassium chloride co-transporter 2 (KCC2) is the principal Cl extrusion mechanism employed by mature neurons in the central nervous system (CNS) and plays a critical role in determining the efficacy of fast synaptic inhibition mediated by type A -aminobutyric acid receptors (GABARs) to protect against epileptogenesis. It has previously been demonstrated that epileptic seizures down-regulate KCC2 and induce neuronal apoptosis through the extrinsic apoptotic pathway. However, the mechanism by which neuronal death is induced by KCC2 loss remains unknown.

View Article and Find Full Text PDF