Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The deformation-coordination ability between ductile metal and brittle dispersive ceramic particles is poor, which means that an improvement in strength will inevitably sacrifice ductility in dispersion-strengthened metallic materials. Here, we present an inspired strategy for developing dual-structure-based titanium matrix composites (TMCs) that achieve 12.0% elongation comparable to the matrix Ti6Al4V alloys and enhanced strength compared to homostructure composites. The proposed dual-structure comprises a primary structure, namely, a TiB whisker-rich region engendered fine grain Ti6Al4V matrix with a three-dimensional micropellet architecture (3D-MPA), and an overall structure consisting of evenly distributed 3D-MPA "reinforcements" and a TiBw-lean titanium matrix. The dual structure presents a spatially heterogeneous grain distribution with 5.8 μm fine grains and 42.3 μm coarse grains, which exhibits excellent hetero-deformation-induced (HDI) hardening and achieves a 5.8% ductility. Interestingly, the 3D-MPA "reinforcements" show 11.1% isotropic deformability and 66% dislocation storage, which endows the TMCs with good strength and loss-free ductility. Our enlightening method uses an interdiffusion and self-organization strategy based on powder metallurgy to enable metal matrix composites with the heterostructure of the matrix and the configuration of reinforcement to address the strength-ductility trade-off dilemma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334790PMC
http://dx.doi.org/10.1073/pnas.2302234120DOI Listing

Publication Analysis

Top Keywords

interdiffusion self-organization
8
self-organization strategy
8
titanium matrix
8
matrix composites
8
3d-mpa "reinforcements"
8
matrix
6
loss-free tensile
4
ductility
4
tensile ductility
4
ductility dual-structure
4

Similar Publications

The deformation-coordination ability between ductile metal and brittle dispersive ceramic particles is poor, which means that an improvement in strength will inevitably sacrifice ductility in dispersion-strengthened metallic materials. Here, we present an inspired strategy for developing dual-structure-based titanium matrix composites (TMCs) that achieve 12.0% elongation comparable to the matrix Ti6Al4V alloys and enhanced strength compared to homostructure composites.

View Article and Find Full Text PDF