98%
921
2 minutes
20
Background: Worldwide, it is estimated that over 6 million people are infected with Chagas disease (ChD). It is a neglected disease that can lead to severe heart conditions in its chronic phase. While early treatment can avoid complications, the early-stage detection rate is low. We explore the use of deep neural networks to detect ChD from electrocardiograms (ECGs) to aid in the early detection of the disease.
Methods: We employ a convolutional neural network model that uses 12-lead ECG data to compute the probability of a ChD diagnosis. Our model is developed using two datasets which jointly comprise over two million entries from Brazilian patients: The SaMi-Trop study focusing on ChD patients, enriched with data from the CODE study from the general population. The model's performance is evaluated on two external datasets: the REDS-II, a study focused on ChD with 631 patients, and the ELSA-Brasil study, with 13,739 civil servant patients.
Findings: Evaluating our model, we obtain an AUC-ROC of 0.80 (CI 95% 0.79-0.82) for the validation set (samples from CODE and SaMi-Trop), and in external validation datasets: 0.68 (CI 95% 0.63-0.71) for REDS-II and 0.59 (CI 95% 0.56-0.63) for ELSA-Brasil. In the latter, we report a sensitivity of 0.52 (CI 95% 0.47-0.57) and 0.36 (CI 95% 0.30-0.42) and a specificity of 0.77 (CI 95% 0.72-0.81) and 0.76 (CI 95% 0.75-0.77), respectively. Additionally, when considering only patients with Chagas cardiomyopathy as positive, the model achieved an AUC-ROC of 0.82 (CI 95% 0.77-0.86) for REDS-II and 0.77 (CI 95% 0.68-0.85) for ELSA-Brasil.
Interpretation: The neural network detects chronic Chagas cardiomyopathy (CCC) from ECG-with weaker performance for early-stage cases. Future work should focus on curating large higher-quality datasets. The CODE dataset, our largest development dataset includes self-reported and therefore less reliable labels, limiting performance for non-CCC patients. Our findings can improve ChD detection and treatment, particularly in high-prevalence areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361500 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0011118 | DOI Listing |
Cereb Cortex
August 2025
Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.
Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.
Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.
View Article and Find Full Text PDFMol Divers
September 2025
Information Technology and Computing Applications, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, India.
Naunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, #18 Daoshan Road, Fuzhou, Fujian, 350001, China.
Postpartum hemorrhage (PPH) is a life-threatening obstetric complication. We aimed to identify the drugs that associated with PPH based on the FDA Adverse Event Reporting System (FAERS) data, providing scientific evidence for targeted prevention of drug-related PPH risk factors. Data from 2004Q1 to 2025Q1 were extracted from FAERS, and disproportionality analysis was performed to identify potential drug signals.
View Article and Find Full Text PDFEvol Anthropol
September 2025
Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, USA.
Language is central to the cognitive and sociocultural traits that distinguish humans, yet the evolutionary emergence of this capacity is far from fully understood. This review explores how the study of the brains of language-trained apes (LTAs) offers a unique and valuable opportunity to tease apart the relative contribution of evolved species differences, behavior, and environment in the emergence of complex communication abilities. For example, when raised in sociolinguistically rich and interactive environments, LTAs show communicative competencies that parallel aspects of early human language acquisition and exhibit altered neuroanatomy, including increased connectivity and laterization in regions associated with language.
View Article and Find Full Text PDF