98%
921
2 minutes
20
The ubiquitous presence of microplastics (MPs) in the ocean represents a potential threat to marine organisms, with poorly understood long-term adverse effects, including exposure to plastic additives. The present study investigated the ingestion of MPs in two epipelagic fish species (Trachurus picturatus and Scomber colias) and three pelagic squid species (Loligo vulgaris, Ommastrephes caroli and Sthenoteuthis pteropus) from an open oceanic region of the Northeast Atlantic. Seven phthalate esters (PAEs) were also analysed in the organisms' tissue, and the potential correlation between PAEs concentrations and ingested MPs was investigated. Seventy-two fish and 20 squid specimens were collected and analysed. MPs were found in the digestive tract of all species and in the squid species' gills and ink sacs. The highest occurrence of MPs was in the stomach of S. colias (85 %) and the lowest in the stomach and ink sac of O. caroli and L. vulgaris (12 %). Most of the particles identified (>90 %) were fibres. Among all the ecological and biological factors considered (dietary preferences, season, body size, total weight, liver weight, hepatosomatic index and gastrosomatic index), only gastrosomatic index (GSI) and season were significant predictors of MPs ingestion in fish species, with a greater likelihood of ingestion in the cold season and in specimens with higher GSI values (i.e. higher feeding intensity). Four PAEs (DEP, DIBP, BBP, DEHP) were detected in all the species analysed, with average ∑PAEs concentrations ranging between 10.31 and 30.86 ng/g (wet weight). DIBP was positively correlated with ingested MPs, suggesting this compound might represent a "plastic tracer". This study looks into the problem of MPs ingestion for pelagic species in an open oceanic region, highlighting the most suitable bioindicators and providing essential insights into the factors that may influence ingestion rates. Additionally, the detection of PAEs in all species indicates the need for further research on the contamination sources, the effects of these chemicals on marine organisms, and the potential risks to human health through seafood consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164952 | DOI Listing |
J Agric Food Chem
September 2025
College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China.
Sulfated fucan has attracted growing attention due to its diverse biological properties. Endo-1,3-fucanases are valuable tools for the degradation of sulfated fucan. This study characterized an endo-1,3-fucanase Fun174Sb from the GH174 family, utilizing a combination of protein crystallography, mutagenesis, computational biology, and nuclear magnetic resonance techniques.
View Article and Find Full Text PDFAnal Chem
September 2025
Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique with a wide range of applications. To support the analysis of diverse and complex samples, various NMR tools and accessories have been created. Three-dimensional (3D) printing is an underutilized production method for NMR hardware, mainly due to the lack of H NMR background-free resins.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083 China.
Unlabelled: Marinisomatota (formerly recognized as Marinimicrobia, Marine Group A, and SAR406) are ubiquitous and abundant in marine environments, traditionally characterized as heterotrophic microorganisms. However, certain members of Marinisomatota have demonstrated the capacity to harness light for carbon dioxide fixation and the synthesis of organic compounds, thriving in the translucent zone or transitioning between the translucent and aphotic layers. The metabolic strategies driving the shift in trophic behaviors, and the factors influencing these transitions, remain largely unexplored.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202 USA.
Tiny unicellular cyanobacteria or picocyanobacteria (0.5-3 µm) are important due to their ecological significance. Chesapeake Bay is a temperate estuary that contains abundant and diverse picocyanobacteria.
View Article and Find Full Text PDF