Combined disposal of methyl orange and corn straw via stepwise adsorption-biomethanation-composting.

J Environ Manage

Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China;

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Agriculture wastes have been proved to be the potential adsorbents to remove azo dye from textile wastewater, but the post-treatment of azo dye loaded agriculture waste is generally ignored. A three-step strategy including sequential adsorption-biomethanation-composting was developed to realize the co-processing of azo dye and corn straw (CS). Results showed that CS represented a potential adsorbent to remove methyl orange (MO) from textile wastewater, with the maximum MO adsorption capacity of 10.00 ± 0.46 mg/g, deriving from the Langmuir model. During the biomethanation, CS could serve as electron donor for MO decolorization and substrate for biogas production simultaneously. Though the cumulative methane yield of CS loaded with MO was 11.7 ± 2.28% lower than that of blank CS, almost complete de-colorization of MO could be achieved within 72 h. Composting could achieve the further degradation of aromatic amines (intermediates during the degradation of MO) and decomposition of digestate. After 5 days' composting, 4-aminobenzenesulfonic acid (4-ABA) was not detectable. The germination index (GI) also indicated that the toxicity of aromatic amine was eliminated. The overall utilization strategy gives novel light on the management of agriculture waste and textile wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118358DOI Listing

Publication Analysis

Top Keywords

azo dye
12
textile wastewater
12
methyl orange
8
corn straw
8
agriculture waste
8
combined disposal
4
disposal methyl
4
orange corn
4
straw stepwise
4
stepwise adsorption-biomethanation-composting
4

Similar Publications

Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).

View Article and Find Full Text PDF

The design and synthesis of advanced energetic non-hydrogen 1,2,5-oxadiazole assemblies were realized. All target azo-1,2,5-oxadiazole assemblies have high densities (1.89-1.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

Antibiotic resistance is the never-ending war among medical researchers and microbial life forms. The extensive evolving potential of the microorganisms, in combination with improper usage, storage and disposal of the marketed antibiotics generated from natural or artificial sources, always calls for the need for novel antimicrobial agents with different modes of action. In this project, azo-oxime complexes of iron and manganese (seven in total) have been applied to wild multidrug-resistant pathogenic bacterial strains (isolated from sewage water of hospital).

View Article and Find Full Text PDF

Mechanistic Insight into Para-Substituent Control of Thermal Half-Lives in Arylazopyrazole Photoswitches.

Angew Chem Int Ed Engl

September 2025

Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna, 1090, Austria.

Arylazopyrazoles are versatile photoswitches with excellent photochromic properties and tunable thermal half-lives, yet the mechanistic role of substituents in controlling thermal stability remains poorly understood. Here, we synthesized an extensive library of arylazo-1,3,5-trimethylpyrazole photoswitches and rationalized the influence of para-substituents on the thermal half-lives, finding excellent agreement between calculated and measured trends. Calculations show that the electron-donating and electron-withdrawing nature of the substituents modulates the back-isomerization process through at least two distinct mechanisms.

View Article and Find Full Text PDF