Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Li-rich layered oxide (LLO) cathode materials with mixed cationic and anionic redox reactions display much higher specific capacity than other traditional layered oxide materials. However, the practical specific capacity of LLO during the first cycle in sulfide all-solid-state lithium-ion batteries (ASSLBs) is extremely low. Herein, the capacity contribution of each redox reaction in LLO during the first charging process is qualitatively and quantitatively analyzed by comprehensive electrochemical and structural measurements. The results demonstrate that the cationic redox of the LiTMO (TM = Ni, Co, Mn) phase is almost complete, while the anionic redox of the LiMnO phase is seriously limited due to the sluggish transport kinetics and severe LLO/LiPSCl interface reaction at high voltage. Therefore, the poor intrinsic conductivity and interface stability during the anionic redox jointly restrict the capacity release or delithiation/lithiation degree of LLO during the first cycle in sulfide ASSLBs. This study reveals the origin of the seriously limited anionic redox reaction in LLO, providing valuable guidance for the bulk and interface design of high-energy-density ASSLBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c01876DOI Listing

Publication Analysis

Top Keywords

anionic redox
20
seriously limited
12
redox reaction
12
origin seriously
8
limited anionic
8
sulfide all-solid-state
8
layered oxide
8
specific capacity
8
llo cycle
8
cycle sulfide
8

Similar Publications

Iron-cerium co-doped carbon dots (Fe,Ce-CDs) were synthesized by one-step hydrothermal method using tartaric acid and L-tryptophan as ligands. Fe,Ce-CDs shows excellent peroxidase-like (POD) activity and nitrite (NO) can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its blue oxidation product (oxTMB) due to the formation of ∙NO free radical. NO further react with oxTMB to form a yellow color via diazotization resulting in the absorbance Change at 450 nm.

View Article and Find Full Text PDF

The Perseverance rover has explored and sampled igneous and sedimentary rocks within Jezero Crater to characterize early Martian geological processes and habitability and search for potential biosignatures. Upon entering Neretva Vallis, on Jezero Crater's western edge, Perseverance investigated distinctive mudstone and conglomerate outcrops of the Bright Angel formation. Here we report a detailed geological, petrographic and geochemical survey of these rocks and show that organic-carbon-bearing mudstones in the Bright Angel formation contain submillimetre-scale nodules and millimetre-scale reaction fronts enriched in ferrous iron phosphate and sulfide minerals, likely vivianite and greigite, respectively.

View Article and Find Full Text PDF

: The objective of this study is to develop a straightforward and expeditious clinical detection method for meropenem. This study aims to introduce an innovative nanoenzyme design, thereby broadening the application of platinum nanomaterials in biological detection. It seeks to facilitate the portable detection of meropenem using commercial software.

View Article and Find Full Text PDF

Convergent Paired Electrolysis Enables Electrochemical Halogen-Atom Transfer-Mediated Alkyl Radical Cross-Coupling.

J Am Chem Soc

September 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

The direct cross-coupling of unactivated alkyl halides with aryl or heteroaryl partners remains a fundamental challenge in synthetic chemistry due to their inertness and propensity for side reactions. Herein, we report a transition-metal-free electrochemical halogen-atom transfer strategy that enables efficient alkyl radical cross-coupling via convergent paired electrolysis. In this system, anodically generated α-aminoalkyl radicals mediate the activation of alkyl iodides, while aryl/heteroaryl aldehydes or nitriles undergo cathodic reduction to afford persistent ketyl radical anions or aryl radical anions.

View Article and Find Full Text PDF

Redox-active inverse crowns - pockets for heavier chalcogenides.

Dalton Trans

September 2025

Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.

The reactivity of the redox-active metal crown complex (BDI*)MgNaN'' (VI), formally containing a Mg centre, with phosphine chalcogenides, RPCh (Ch = O, S, Se, Te; R = Me, Et) was investigated (BDI* = HC[BuCN(DIPeP)] with DIPeP = 2,6-EtCH-phenyl). While all RPCh reagents could be reduced, only the heavier ones led to clean reduction to S, Se and Te anions which were captured in the metalla-cycle. The smaller S anion can be stabilized by the tetrametallic MgNa-crown but the larger Se and Te require a pentametallic MgNa-crown.

View Article and Find Full Text PDF