98%
921
2 minutes
20
Ultraviolet (UV) radiation is extremely dangerous to humans and can contribute to immunosuppression, erythema, early ageing and skin cancer. UV protection finishing may greatly influence the handling and permeability of fabrics, while UV-proof fibres can guarantee close contact between UV-resistant agents and fabric without affecting the handling of the fabric. In this study, polyacrylonitrile (PAN)/UV absorber 329 (UV329)/titanium dioxide (TiO) composite nanofibrous membranes with complex, highly efficient UV resistance were fabricated electrospinning. UV329 was included in the composite to further strengthen the UV resistance properties absorption function, while TiO inorganic nanoparticles were added to provide UV shielding function. The presence of UV329 and TiO in the membranes was confirmed using Fourier-transform infrared spectroscopy, which also showed the absence of chemical bonds between PAN and the anti-UV agents. The PAN/UV329/TiO membranes exhibited a UV protection factor of 1352 and a UVA transmittance of 0.6%, which indicate their extraordinary UV resistance properties. Additionally, filtration performance was investigated in order to expand the application field of the UV-resistant PAN/UV329/TiO membranes, and the composite nanofibrous membranes showed a UV filtration efficiency of 99.57% and a pressure drop of 145 Pa. The proposed multi-functional nanofibrous membranes have broad application prospects in outdoor protective clothing and window air filters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258809 | PMC |
http://dx.doi.org/10.1039/d3ra02470a | DOI Listing |
Luminescence
September 2025
School of Textile Science and Engineering, Wuyi University, Jiangmen, Guangdong, China.
Acidochromic fluorescent membranes have garnered significant research interest owing to their potential in real-time environmental monitoring and smart sensing applications. However, the rational design of membranes to optimize their structure-property interplay for enhanced acidochromic performance remains further explored. Herein, we prepared various stimulus-responsive micro/nanofibrous membranes using electrospinning technology by incorporating a fluorescent small molecule (TPECNPy-2) with thermoplastic polyurethane (TPU) to obtain specific properties.
View Article and Find Full Text PDFChem Bio Eng
August 2025
Department of Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
The development of biomaterials capable of capturing nondestructively capturing tumor cells is critical for advancing cancer diagnostics and personalized therapies. However, designing specific capture materials for maintaining the structure of captured cells is still a challenge due to the undesirable nonspecific adhesion. Recent evidence showed that neutrophils possess the tumor cell targeting property via the binding of β-integrin on neutrophil membranes to VCAM-1 expressed on tumor cells and natural antiadhesion properties due to the phosphorylcholine on the cell membrane.
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt. Electronic address:
Desalination has emerged as a key solution to the growing global demand for clean water. Membrane distillation (MD) has gained increasing attention due to its ability to treat hypersaline and complex wastewater using low-grade thermal energy. However, MD membranes continue to face performance challenges, particularly low permeate flux and limited resistance to pore wetting.
View Article and Find Full Text PDFAs demands increase for multifunctional textiles and breathable coatings in high-humidity and high-mobility environments, the development of membranes that combine waterproofing, breathability, and mechanical durability has become a critical challenge. This study presents a novel, organic solvent-free electrospinning approach to fabricate waterborne polyurethane (WPU)-based nanofiber membranes, enhanced by polyacrylamide (PAM) as a dual-functional additive. By leveraging hydrogen bonding interactions between the -COO, -NHCOO- groups in WPU and the -CONH groups in PAM, the resulting composite achieved stable electrospinning, improved fiber morphology, and a significantly higher water contact angle (86.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Department of Mechanical Engineering, King Saud University, Riyadh 11421, Saudi Arabia.
In this study, multifunctional nanocomposite membranes were fabricated using biopolymeric polylactic acid (PLA) and cellulose acetate (CA) composites via electrospinning. The hydrophobic nanocomposite membranes were reinforced with varying concentrations of silicon dioxide (silica/SiO) nanoparticles. The developed PLA-CA-SiO nanofibrous membranes are characterized using field emission scanning electron microscopy (FE- energy-dispersive SEM), energy-dispersive X-ray (EDX), elemental mapping, X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques.
View Article and Find Full Text PDF