Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The extensive utilization of both legacy and novel brominated flame retardants (BFRs) leads to high environmental concentrations, which would be bioaccumulated by organisms and further transferred through the food webs, causing potential risks to humans. In this study, five BFRs, that showed high detection frequencies and concentrations in sediments from an e-waste dismantling site in Southern China, namely 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209), were selected as target pollutants in the lab-constructed aquatic food web as part of a micro-ecosystem, to investigate their distribution, bioaccumulation, and trophic transfer patterns. The significant correlations between different samples in the food web indicated that the dietary uptake appeared to influence the levels of BFRs in organisms. Significant negative correlations were observed between the trophic level of organisms and the lipid-normalized concentrations of BTBPE and DBDPE, indicating the occurrence of trophic dilution after 5-month exposure. However, the average values of bioaccumulation factors (BAFs) were from 2.49 to 5.17 L/kg, underscoring the importance of continued concern for environmental risks of BFRs. The organisms occupying higher trophic levels with greater bioaccumulation capacities may play a pivotal role in determining the trophic magnification potentials of BFRs. This research provides a helpful reference for studying the impacts of feeding habits on bioaccumulation and biomagnification, as well as for identifying the fate of BFRs in aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120176DOI Listing

Publication Analysis

Top Keywords

legacy novel
8
novel brominated
8
brominated flame
8
flame retardants
8
distribution bioaccumulation
8
bioaccumulation trophic
8
trophic transfer
8
food web
8
bfrs organisms
8
trophic
6

Similar Publications

Background: The global spread of antimicrobial resistance (AMR) in threatens empiric single-dose gonorrhoea treatment. Enhanced global AMR surveillance is imperative. We report i) gonococcal antimicrobial susceptibility and resistance data from 2023 in the World Health Organization Enhanced Gonococcal Antimicrobial Surveillance Programme (WHO EGASP) in the WHO Western Pacific Region (Cambodia, the Philippines, Viet Nam), Southeast Asian Region (Indonesia, Thailand), and African Region (Malawi, South Africa, Uganda, Zimbabwe), and ii) metadata of the gonorrhoea patients.

View Article and Find Full Text PDF

Sub-inhibitory gentamicin promotes extracellular vesicles biogenesis and blaNDM dissemination in carbapenem-resistant Escherichia coli via mrdA/mrdB pathway.

Vet Microbiol

September 2025

Animal Disease Prevention and Green Development Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China. E

The increasing prevalence of carbapenem-resistant Escherichia coli (CRE) in swine production poses a significant public health threat, largely driven by the misuse of antibiotics. Recent studies highlight extracellular vesicles (EVs) as emerging mediators of horizontal gene transfer and antibiotic resistance dissemination. In this study, we investigated the regulatory effects of sub-inhibitory concentrations of gentamicin (GEN), a commonly used antibiotic in pig farms, on EVs production and blaNDM gene transfer in CRE isolates.

View Article and Find Full Text PDF

Megaherbivores are typically regarded as agents of top-down control, limiting woody encroachment through destructive foraging. Yet they also possess traits and engage in behaviours that facilitate plant success. For example, megaherbivores can act as effective endozoochorous seed dispersers.

View Article and Find Full Text PDF

The production of aminoglycoside-modifying genes by P. aeruginosa is one of the key mechanisms by which resistance to aminoglycoside antibiotics is developed. The aim of the present work was to examine the prevalence of aac(6)-Ib, aac(6)-IIa, and aac(3)-IIa aminoglycoside-modifying genes in clinical samples.

View Article and Find Full Text PDF

3D cell spheroid inoculated with bacteria: An in vitro model for assessing antimicrobial efficacy.

J Biotechnol

August 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China. Electronic address:

Bacterial infections persist as a significant global health challenge, intensifying the demand for novel antimicrobial agents capable of overcoming persistent infections and mitigating the spread of drug-resistant strains. Traditional 2D cell culture assays, prone to bacterial contamination, fail to recapitulate the complex 3D architecture of in vivo tissues, rendering them inadequate as in vitro models for evaluating antimicrobial efficacy. This study investigates the effectiveness of 3D spheroids inoculated with bacteria, hypothesizing that 3D spheroids allow for assessment of antibacterial agents.

View Article and Find Full Text PDF