Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infant formula (IF) is a complex matrix requiring numerous ingredients and processing steps. The objective was to understand how the quality of protein ingredients impacts IF structure and, in turn, their kinetics of digestion. Four powdered IFs (A/B/C/D), based on commercial whey protein (WP) ingredients, with different protein denaturation levels and composition (A/B/C), and on caseins with different supramolecular organisations (C/D), were produced at a semi-industrial level after homogenization and spray-drying. Once reconstituted in water (13 %, wt/wt), the IF microstructure was analysed with asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractometer, transmission electron microscopy and electrophoresis. The rehydrated IFs were subjected to simulated infant in vitro dynamic digestion (DIDGI®). Digesta were regularly sampled to follow structural changes (confocal microscopy, laser-light scattering) and proteolysis (OPA, SDS-PAGE, LC-MS/MS, cation-exchange chromatography). Before digestion, different microstructures were observed among IFs. IF-A, characterized by more denatured WPs, presented star-shaped mixed aggregates, with protein aggregates bounded to casein micelles, themselves adsorbed at the fat droplet interface. Non-micellar caseins, brought by non-micellar casein powder (IF-D) underwent rearrangement and aggregation at the interface of flocculated fat droplets, leading to a largely different microstructure of IF emulsion, with large aggregates of lipids and proteins. During digestion, IF-A more digested (degree of proteolysis + 16 %) at 180 min of intestinal phase than IF-C/D. The modification of the supramolecular organisation of caseins implied different kinetics of peptide release derived from caseins during the gastric phase (more abundant at G80 for IF-D). Bioactive peptide release kinetics were also different during digestion with IF-C presenting a maximal abundance for a large proportion of them. Overall, the present study highlights the importance of the structure and composition of the protein ingredients (WPs and caseins) selected for IF formulation on the final IF structure and, in turn, on proteolysis. Whether it has some physiological consequences remains to be investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.112883DOI Listing

Publication Analysis

Top Keywords

protein ingredients
12
impacts structure
8
vitro dynamic
8
dynamic digestion
8
structure turn
8
kinetics digestion
8
peptide release
8
protein
6
digestion
6
caseins
5

Similar Publications

Background And Aim: Purple sweet potatoes ( var. Ayamurasaki) possess high nutritional potential due to their rich content of amino acids, minerals, and fatty acids. However, their nutritional profile can be further improved through fermentation.

View Article and Find Full Text PDF

Background And Aim: The global demand for sustainable animal protein sources has led to the exploration of insects as alternative feed ingredients. Among these, black soldier fly (BSF) larvae () have demonstrated significant nutritional and functional potential. This study investigated the effects of microwave-dried BSF larvae meal (MDBSFM) on growth performance, intestinal morphology, humoral immune response, and insulin-like growth factor-1 (IGF-1) messenger RNA (mRNA) expression in broiler chickens.

View Article and Find Full Text PDF

Unlocking the nutritional and bioactive potential of sheep milk: implications for food and health.

Food Funct

September 2025

Department of Animal Nutrition, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.

Sheep milk has gained increasing attention for its compositional similarity to human milk and its abundance of bioactive compounds with nutritional and therapeutic potential. It is rich in proteins, essential fatty acids, vitamins, minerals, immunoglobulins, and hormones, as well as peptides and oligosaccharides with antiviral, antibacterial, anti-inflammatory, and immune-modulatory effects. Despite these benefits, the literature remains fragmented, with limited integration of data on the mechanisms by which these components influence health outcomes, and few comprehensive comparisons with other mammalian milks.

View Article and Find Full Text PDF

What Makes Lupins Less Palatable to Consumers? Can the Sensory Quality of Lupin be Improved and Commercialized?

Compr Rev Food Sci Food Saf

September 2025

School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, Western Australia, Australia.

Introducing underutilized legumes as plant-based protein sources to daily meals is an approach to address the increasing demand for alternative proteins. However, legumes often exhibit off-flavors and aromas, causing negative consumer perceptions. Lupins are an underutilized legume that is becoming popular as a plant protein source due to their high protein, fiber, and low starch contents.

View Article and Find Full Text PDF

There is a need for sustainable food production and processing that reduces resource use and increases the availability of nutritious, innovative, and sustainable food. A coordinated, multisectoral approach across the food supply chain is essential to address global food and nutrition insecurity. The dairy industry produces abundant bioactive compound streams that can be examined for their valuable functionalities.

View Article and Find Full Text PDF