Publications by authors named "Thomas Croguennec"

Combination of plant and animal protein diet is becoming a valuable source of nutrition in the modern diet due to the synergistic functional properties inherent in these protein complexes. Moreover, the synergy between animal and plant proteins can contribute to the high stability and improved solubility of the encapsulated bioactive ingredients (e.g.

View Article and Find Full Text PDF

Infant formula (IF) is a complex matrix requiring numerous ingredients and processing steps. The objective was to understand how the quality of protein ingredients impacts IF structure and, in turn, their kinetics of digestion. Four powdered IFs (A/B/C/D), based on commercial whey protein (WP) ingredients, with different protein denaturation levels and composition (A/B/C), and on caseins with different supramolecular organisations (C/D), were produced at a semi-industrial level after homogenization and spray-drying.

View Article and Find Full Text PDF

One of the first steps of cheese making is to suppress the colloidal stability of casein micelles by enzymatic hydrolysis and initiate milk gelation. Afterwards, the enzymatic milk gel is cut to promote syneresis and expulsion of the soluble phase of milk. Many studies have reported on the rheological properties of enzymatic milk gels at small strain, but they provide limited information on the ability of the gel to be cut and handled.

View Article and Find Full Text PDF

In recent years, various types of plant-based meat, dairy, and seafood alternatives merged in the health-conscious consumer market. However, plant-based alternatives present complexity in terms of nutritional profile and absorption of nutrients after food ingestion. Thus, this review summarizes current strategies of plant-based alternatives and their nutritional analysis along with gastrointestinal digestion and bioavailability.

View Article and Find Full Text PDF

Eggs are a whole food which affordably support human nutritional requirements worldwide. Eggs strongly resist bacterial infection due to an arsenal of defensive systems, many of which reside in the egg white. However, despite improved control of egg production and distribution, eggs remain a vehicle for foodborne transmission of serovar Enteritidis, which continues to represent a major public health challenge.

View Article and Find Full Text PDF

Fouling of plate heat exchangers (PHEs) is a recurring problem when pasteurizing whey protein solutions. As Ca is involved in denaturation/aggregation mechanisms of whey proteins, the use of calcium chelators seems to be a way to reduce the fouling of PHEs. Unfortunately, in depth studies investigating the changes of the whey protein fouling mechanism in the presence of calcium chelators are scarce.

View Article and Find Full Text PDF

Understanding the food protein binding to bioactive compounds is of utmost importance for the development of efficient protein-based delivery systems. The binding of lutein to sodium caseinate (NaCas) or native casein micelle (PPCN) was investigated at pH 7 to evaluate the effect of casein supramolecular structures on the interaction. Fluorescence quenching, UV-vis spectroscopy, and dynamic light scattering were carried out.

View Article and Find Full Text PDF

Heat treatments induce changes in the protein structure in infant milk formulas (IMFs). The present study aims to investigate whether these structural modifications affect protein digestion. Model IMFs (1.

View Article and Find Full Text PDF

The process of manufacturing infant milk formulas (IMFs) involves heat treatments that can lead to whey protein denaturation. The objective of the study was to determine how protein composition affects the denaturation kinetics of the whey proteins within IMFs. Three model IMFs (1.

View Article and Find Full Text PDF

Animal- and plant-based proteins are present in a wide variety of raw and processed foods. They play an important role in determining the final structure of food matrices. Food proteins are diverse in terms of their biological origin, molecular structure, and supramolecular assembly.

View Article and Find Full Text PDF

During storage, a series of changes occur for dairy powders, such as protein lactosylation and the formation of Maillard reaction products (MRPs), leading to powder browning and an increase of insoluble matter. The kinetics of protein lactosylation and MRP formation are influenced by the lactose content of the dairy powder. However, the influence of lactose in the formation of insoluble matter and its role in the underlying mechanisms is still a subject of speculation.

View Article and Find Full Text PDF

Understanding the mechanism of interaction between food proteins and bioactives constitutes the preliminary step to design food grade nanocarriers. We investigated the interaction between cyanidin-3-O-glucoside (C3G), and 20nm-sized sodium caseinate nanoparticles (NaCas) at pH 7 and pH 2 by fluorescence spectroscopy and dynamic light scattering. The characterization of the C3G-NaCas interaction indicated that the fluorescence quenching mechanism was predominantly static.

View Article and Find Full Text PDF

Heteroprotein complex coacervation corresponds to the formation of two liquid phases in equilibrium induced by the interaction of two oppositely charged proteins. The more concentrated phase known as coacervate phase, has attracted interest from several fields of science due to its potential applications for example for encapsulation and delivery of bioactives. Prior such application, it is necessary to understand how the presence of small ligands affects the complex coacervation.

View Article and Find Full Text PDF

Proteins exhibit a rich diversity of functional, physico-chemical and biodegradable properties which makes them appealing for various applications in the food and non-food sectors. Such properties are attributed to their ability to interact and assemble into a diversity of supramolecular structures. The present review addresses the updated research progress in the recent field of complex coacervation made from mixtures of oppositely charged proteins (i.

View Article and Find Full Text PDF

Under specific conditions, mixing two oppositely charged proteins induces liquid-liquid phase separation. The denser phase, or coacervate phase, can be potentially applied as a system to protect or encapsulate different bioactive molecules with a broad range of food and/or medical applications. The optimization of the design and efficiency of such systems requires a precise understanding of the structure and the equilibrium of the nanocomplexes formed within the coacervate.

View Article and Find Full Text PDF

In the study presented here, we investigated the interaction at pH 5.5 between folic acid (FA) and lactoferrin (LF), a positively charged protein. We found a binding constant Ka of 10(5) M(-1) and a high stoichiometry of 10 mol of FA/mol of LF.

View Article and Find Full Text PDF

Ligand-binding properties of β-lactoglobulin (β-lg) are well documented, but the subsequent biological functions are still unclear. Focusing on fatty acids/β-lg complexes, the structure-function relationships are reviewed in the light of the structural state of the protein (native versus non-native aggregated proteins). After a brief description of β-lg native structure, the review takes an interest in the binding properties of native β-lg (localization of binding sites, stoichiometry, and affinity) and the way the interaction affects the biological properties of the protein and the ligand.

View Article and Find Full Text PDF

The dairy protein β-lactoglobulin (βlg) is known to form a complex with fatty acids (FA). Due to industrial processing, βlg is often in its non-native form in food products, which can modify the FA/βlg complex properties. We investigated the interaction of bovine βlg, in selected structural forms (native βlg, a covalent dimer and as nanoparticles), with linoleate (C18:2).

View Article and Find Full Text PDF

The dairy protein β-lactoglobulin (BLG) is known to bind fatty acids such as the salt of the essential longchain fatty acid linoleic acid (cis,cis-9,12-octadecadienoic acid, n-6, 18:2). The aim of the current study was to investigate how bovine BLG-linoleate complexes, of various stoichiometry, affect the enzymatic digestion of BLG and the intracellular transport of linoleate into enterocyte-like monolayers. Duodenal and gastric digestions of the complexes indicated that BLG was hydrolyzed more rapidly when complexed with linoleate.

View Article and Find Full Text PDF

The dairy protein β-lactoglobulin (βlg) is known to bind hydrophobic ligands such as fatty acids. In the present work, we investigated the biological activity in vitro of linoleate once complexed to bovine βlg. Binding of linoleate (C18:2) to bovine βlg was achieved by heating at 60 °C for 30 min at pH 7.

View Article and Find Full Text PDF

Understanding the driving forces governing protein assembly requires the characterization of interactions at molecular level. We focus on two homologous oppositely charged proteins, lysozyme and α-lactalbumin, which can assemble into microspheres. The assembly early steps were characterized through the identification of interacting surfaces monitored at residue level by NMR chemical shift perturbations by titrating one (15)N-labeled protein with its unlabeled partner.

View Article and Find Full Text PDF

Self-assembly in aqueous solution of two oppositely charged globular proteins, hen egg white lysozyme (LYS) and bovine calcium-depleted α-lactalbumin (apo α-LA), was investigated at pH 7.5. The aggregation rate of equimolar mixtures of the two proteins was determined using static and dynamic light scattering as a function of the ionic strength (15-70 mM) and protein concentration (0.

View Article and Find Full Text PDF

Controlled interactions and assembly of proteins with one another promise to be a powerful approach for generating novel supramolecular architectures. In this study, we report on the ability of oppositely charged globular proteins to self-assemble into well-defined micrometer-sized spherical particles under specific physicochemical conditions. We show that microspheres were spontaneously formed in all binary protein mixtures tested once the physicochemical conditions were optimized.

View Article and Find Full Text PDF

Apo alpha-lactalbumin (apo alpha-LA) and lysozyme (LYS), two homologous globular proteins have been shown to be able to interact and self-assemble to form microspheres. We report on the organisation and the mechanism of such protein assembly process using a variety of microscopic techniques. We demonstrated that proteins involved into apo alpha-LA/LYS microspheres exchange with those free in solution.

View Article and Find Full Text PDF

In a previous work, we reported that contrary to native calcium-loaded alpha-lactalbumin (holo alpha-LA), calcium-depleted form (apo alpha-LA) has the ability to self-assemble with lysozyme (LYS) to form different supramolecular structures in temperature-dependent manner. In this study, we examine what happens at molecular scale using fluorescence techniques. Fluorescence anisotropy coupled with fluorescence lifetime measurements provides a means to measure intermolecular interactions.

View Article and Find Full Text PDF